1 Introduction

Microcontroller (MCU) based electronic-control units (ECU) are rapidly replacing mechanical and passive electronic systems in automobiles. Each ECU node demands current from the electrical system even when the engine is not running, leaving the battery as the only source of power. ECU designers face the challenge of adding more functionality to the vehicle while keeping the total key-off current demand below the fixed limit of the battery’s available energy.

This application note focuses on using the S08DZ MCU to achieve low power consumption. The S08DZ is a member of the high-performance HCS08 family of 8-bit microcontrollers. Common family features include a 40 MHz HCS08 CPU, an enhanced instruction set, controller area network (CAN), and a background-debug controller (BDC) that provides an easy interface for in-system, real-time debugging. See the device data sheet, Freescale document MC9S08DZ60, for a more
complete description of part features. Always refer to the data sheet for the most current specification (http://www.freescale.com).

The S08DZ MCU has additional features for achieving low power consumption. These features provide effective flexibility for the user and can provide ideal conditions for many applications.

Dynamically changing the operating mode of the microcontroller can achieve the lowest net power consumption. For example, when the microcontroller needs to perform a computationally intensive task, the MCU can be run as fast as possible for the shortest possible time. Then, when the ECU is not needed, an extremely low current sleep mode can be entered, where as much of the silicon is shut off as possible.

Clock modules offer options to change clock modes and clock frequencies allowing selection of the best power consumption for different tasks. Stop and wait modes allow further current savings by shutting down modules inside the MCU. The figure below shows how this strategy might be implemented.

![Figure 1.](image)

2 System Clock Generation

The S08DZ features a multi-clock generator (MCG) module capable of using an external (crystal, resonator, or square wave) or an internal source to generate the system clock. Also, in the MCG, frequency-locked loop (FLL) or phase-locked loop (PLL) stages can boost the external or internal clock source to a higher frequency. The S08DZ can use a low-range (32 kHz to 100 kHz) or high-range (1 MHz to 16 MHz) crystal or resonator. Upon any system startup (from stop or reset), the MCU uses the low-power internal clock source, that eliminates a long startup time. Depending on application
requirements, power can be reduced by selecting the best system-clock-generation option. Table 1 shows configuration considerations among clock modes. For more information about the S08DZ clock options, refer to the device data sheet MC9S08DZ60.

3 Operation Modes

After reset, operation mode is a run mode in which the CPU is active and peripherals can be enabled. By executing a WAIT instruction, the MCU enters wait mode. In wait mode, power is reduced because the CPU is not clocked. To reduce power consumption further, stop mode can be used. When a STOP instruction executes, one of two stop modes are entered. Stop2 and stop3 each provide different levels of operation that reduce power consumption. Table 2 describes stop mode behaviors.
3.1 **Real-Time Counter (RTC)**

The RTC can be used to exit stop2 or stop3. In stop3, it can be configured to use an external or one of two internal references (LPO or IRCLK). In stop3, using an internal reference reduces power consumption further than using the external reference. In stop2, only the LPO clock can be used. The RTC module can be configured to achieve a variety of real-time interrupt periods. The 1 kHz reference has a tolerance of about ±30%; therefore, the wakeup times are approximate when the RTC uses the LPO clock.

3.2 **Low-Voltage Detect (LVD)**

The S08DZ MCU can enable or disable low-voltage detection when in stop3 mode. If low voltage detection is enabled in stop, only stop3 can be entered. If the LVDSE bit in SPMSC1 is set, then upon execution of a STOP instruction, stop3 is entered, regardless of the state of the state of the PDC and PPDC bits in SPMSC2.

3.3 **Operating Voltage Ranges**

The S08DZ MCU is specified to operate from 5.5 V down to 2.7 V

3.4 **Internal Voltage Regulator**

The S08DZ uses an internal voltage regulator to provide about 2.4 V for the internal power supplies to the CPU and most peripherals. The regulator is always on when the MCU is in run and wait modes. In stop2 and stop3 modes, the regulator enters a state that results in looser regulation, thereby saving power.

4 **Description of Low-Power Modes**

4.1 **Stop Modes**

With the introduction of the HCS08 family of MCUs, two new forms of stop mode were introduced, resulting in three stop modes: stop1, stop2, and stop3. Stop3 is functionally equivalent to a stop mode on the HC08 MCUs, although stop1 and stop2 are new lower power modes. The S08DZ and other 5 V HCS08 MCUs do not implement stop1 mode.
4.2 Stop2

Stop2 provides lower standby currents than stop3. Stop2 is a partial power-down mode in which the internal voltage regulator enters a loose regulation mode, thereby reducing the current consumption by reducing the regulator power output.

In stop2, the RAM remains powered, and the states of all the I/O pins are latched in their state prior to entering stop2. Pins configured as inputs remain inputs, and output pins drive the last known state. However, the voltage regulator powers all other peripherals, and they are powered down and cannot be used such as LVD and pin interrupts. The ADC is also turned off and cannot be used.

Although the I/O pins retain their state in stop2, all registers are powered down. To preserve the values of any register such as SCI, timer, or port data, copy them into RAM before entering stop2.

Exit stop2 by asserting the RESET pin or IRQ pin low. The IRQ is active low in this mode, regardless of its configuration before entering stop2. The IRQ pin must be enabled prior to entering stop2 mode.

In addition to the RESET or IRQ pin, in stop2, the RTC can be enabled and used for wakeup without depending on an external input. However, only the internal 1 kHz LPO oscillator can be the clock source for the RTC in stop2. When the RTC event occurs, stop2 is exited as if a POR occurred.

Exiting stop2 results in the registers resetting to their POR values with the following exception. The PPDF bit in the SPMSC2 register is set, and the I/O pins remain latched in their current state until a logic 1 is written to the PPDACK bit in SPMSC2. The PPDF bit can be used as a flag to branch to a stop2 recovery routine. To maintain the current state of the I/O pins, copy the saved register values in RAM back into their respective locations before writing the PPDACK bit. Any un-restored register reverts to its POR value and any corresponding I/O pins also revert to their POR state. Upon stop2 recovery, normal peripheral operation does not begin until the PPDACK is written because the I/O is latched.

4.3 Stop3

Stop3 in HCS08 family of devices is functionally equivalent to the stop mode on HC08 family MCUs. All I/O pins are latched in the state they were in prior to executing the stop command. In stop3, several options are available which are not available in the other stop modes. Stop3 is the only stop mode where LVD protection can be enabled during stop. In fact, if the LVDSE bit in the SPMSC2 register is set, only stop3 can be entered.

Also, the OSCSTEN bit can be set so that the external crystal oscillator is enabled but the FLL, PLL, and the clock to the rest of the MCU are off. The OSCSTEN option can be used to avoid long oscillator startup times. This also allows the RTI to use an external clock source as a reference for the real-time interrupts. For time-critical applications using the external reference provides for precise RTC intervals.

Exit from stop3 can be less intrusive than the exit of stop2. If an interrupt source such as IRQ, pin interrupts, or RTC is used to exit stop3, the MCU services the interrupt and then continues operation at the instruction following the stop instruction. It is not necessary to initialize peripherals after exiting stop3. Stop3 can also be exited by asserting the RESET pin. In this case, the MCU fetches the reset vector, and registers and peripherals are placed in their reset state.
4.4 Wait

Wait mode consumes less power than run mode. In this mode, clocks to the CPU are turned off to reduce power. All other peripherals can be enabled in wait. In this mode, any interrupt can be used to exit wait. A common application is executing a WAIT command and then waiting for an SCI or SPI interrupt so operation continues. After exit from wait via an interrupt, the MCU services the interrupt then continues operation at the instruction that follows the WAIT command.

4.5 Using the Low-Power Modes

To enter either stop mode, in the system options register (SOPT), the stop-mode-enable bit (STOPE) must be set to a logic 1. This register is a write-once after any reset, so ensure to configure the other options in the same write. If the STOPE bit is clear and an attempt to execute a STOP instruction is made, the instruction is treated as an illegal opcode and a reset is forced.

In the system-power-management-status-and-control-2 register (SPMSC2), the partial-power-down control (PPDC) determines which stop mode is entered when a STOP instruction executes.

In addition, to be able to use stop2 mode, the LVDSE bit in SPMSC1 must be cleared. If this bit is not cleared, only stop3 can be entered.

Table 3 summarizes the source of exit and condition upon exit for each of the stop modes.

<table>
<thead>
<tr>
<th>Mode</th>
<th>PPDC (in SPMC2)</th>
<th>Source of Exit</th>
<th>Condition Upon Exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop2</td>
<td>1</td>
<td>IRQ, reset, or RTC</td>
<td>POR (PPDF bit set in SPMSCR)</td>
</tr>
<tr>
<td>Stop3</td>
<td>0</td>
<td>IRQ, reset, RTC, pin interrupts, ADC, MSCAN, SCI</td>
<td>If reset is used, then POR; else, normal operation continues from the interrupt vector</td>
</tr>
</tbody>
</table>

4.6 Using Stop2

When the PPDC bit a logic 1, stop2 is entered upon execution of the STOP instruction. Stop2 results in lower current consumption than stop3. The RAM is kept powered on to maintain its values, and the I/O pins are latched in their current state.

Considerations to ensure proper operation when using stop2:

- The IRQ pin must be enabled or pulled up externally.
- The LVD must be disabled in stop (LVDSE = 0).
- If using the RTC, only the LPO clock source functions in stop2.
- The EREFSTEN bit has no effect in stop2. This clock reference is always powered down.
- Only the RAM remains powered; all other I/O registers are reset upon wakeup.
- The PPDF flag must always be cleared before the I/O pins can be modified from their stop2 entry state.

The IRQ pin must be enabled by writing to the IRQ pin-enable bit (IRQPE) in the IRQ status-and-control (IRQSC) register. Failure to do this results in the MCU waking from stop2 immediately after entering stop mode.
unless an external pullup is placed on the IRQ pin. The IRQ interrupt does not need to be enabled (IRQIE bit in IRQSC).

The RESET pin automatically configures as a wakeup pin for stop2. No software or external pullups are necessary.

If the LVD module is enabled in stop mode, stop2 cannot be used. Attempting to enter stop2 with the LVD enabled in stop results in the MCU entering stop3 mode instead.

When using the RTC module in stop2 as a wakeup source, the LPO clock source must be used because the external clock source does not remain powered in stop2.

If the external oscillator is enabled in stop mode (the EREFSTEN bit in ICG control register 1) and stop2 is entered, this bit is ignored and the clocks power down.

The stop instruction must be enabled in the SOPT register, and the PPDC bit in the SPMSC2 register must be set to a logic 1.

The peripherals not already mentioned do not require any special handling because they automatically power down upon entry to stop2.

Stop2 is best suited for situations where the lowest possible power consumption is required, but RAM contents and I/O states must be maintained. Because the RTC module can run in stop2, the MCU can also wake up without external input.

Upon waking from stop2, the MCU starts up as if a POR occurred. However, PPDF in the SPMSC2 register can be used to indicate the MCU woke up from stop2 instead of a standard POR.

By using PPDF and PPDACK, the user code can save any desired register values into RAM before entering stop2 and restore these values after waking up. If the port registers are saved and restored before the PPDACK is written to a logic 1, then the I/O states are preserved. Any port pin not reconfigured to its latched stop2 state reverts to its reset state. Also, any peripheral not reconfigured to its pre-stop2 state reverts to its reset state.

Typical code execution sequence for stop2 entry and exit:

```plaintext
; Constant declarations

IRQSCinit: equ $10          ; enable the IRQ pin
SOPT1init: equ $A0          ; enable COP and STOP
RTSCinit: equ $1F           ; enable int and select 1 sec timeout
SPMSC2init: equ $01         ; PPDC set => stop2
SPMSC2st2: equ $07          ; PPDACK, PPDC set
PPDFmask: equ $08           ; mask for PPDF bit in SPMSC2 reg
...

1) System initialization after reset
Start:   lda SPMSC2          ; Check if coming from stop2
         and #PPDFmask
         bne Stop2rec         ; If so, branch to recovery code
         lda #SOPT1init      ; Else, treat as normal POR
         sta SOPT1           ; init the System Options
         lda #SPMSC2init
```
Description of Low-Power Modes

sta SPMSC2 ; init the SPMSC2 reg
mov #IRQSCinit,IRQSC ; init the IRQ pin

2) Entering stop with RTC enabled
jsr SaveRegs
lda #RTCSCinit ; Enable RTC module
sta SRTISC
stop

3) After RTC times out, a POR executes and code restarts at reset vector but this time PPDF are set
Start: lda SPMSC2
and #PPDFmask
bne Stop2rec

Stop2rec: jsr LoadRegs
lda #SPMSC2st2
sta SPMSC2
bra Main

; Begin Main code execution
Main:

The constant SPMSC2st2 also sets the PPDC bit to logic 1. This is because this bit is write-once. Failure to set this bit to 1 in this write results in the next STOP instruction entering stop3 mode instead of stop2. You can enable stop3 instead of stop2 at this point.

The POR results in the system bus clock being driven by an internal 8 MHz clock, and stop recovery occurs fairly quickly, allowing for rapid code execution to restore registers.

4.7 Using Stop3

Stop3 mode does not lead to the lowest possible IDDs but is versatile and the least intrusive of all the stop modes. Stop3 is entered as long as the PPDC bit in SPMSC2 is 0. Also, if LVD is enabled in stop or entry into background debug mode is enabled (ENBDM bit in BDSCR is set), the only stop3 can be entered. When the ENBDM bit is set and a stop instruction is executed, the system clocks to the background debug logic remain active so background debug communication remains possible.

Stop3 must be used when you depend on an easy exit from stop mode. Stop recovery time is typically around 100 µs when using the internal clock or the PLL. For applications using the PLL to boost a reference frequency, stop3 has the advantage of preserving previous DCO settings when recovering from stop3 with an interrupt. This means that upon stop recovery, the DCO is set up with the system clock configuration predefined.

Unlike stop2 mode, if stop3 is exited with an interrupt, there is no need for any initialization or reconfiguration. When the interrupt occurs, the CPU begins processing with the stacking operations leading to the interrupt-service routine. Upon the RTI command of the interrupt service routine, the CPU resumes at the instruction immediately following the stop command.
Demonstration Software

Freescale HC08-Assembler
(c) Copyright Freescale 1987-2006

<table>
<thead>
<tr>
<th>Abs. Rel.</th>
<th>Loc</th>
<th>Obj. code</th>
<th>Source line</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>;**</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td>/* Copyright (c) Freescale 2006</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td>;**</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
<td>/*File name: Automotive Low Power Modes.mcp Current Release Level: 1.0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
<td>/*Last Edit Date: 14-Dec-06 Classification: ES</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
<td>/*</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td></td>
<td>/*Include Files: MC9S08DK60.inc MC9S08DK60 MCU definitions</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
<td>/*Assembler: CodeWarrior for HC08 V5.1</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td></td>
<td>/*Target Device: MC9S08DK60</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
<td>/*Documentation: Automotive S08 Low Power Modes AN3387</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td></td>
<td>;**</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td></td>
<td>/* Author: Donnie Garcia</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td></td>
<td>/* First Release: 06-May-03</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td></td>
<td>/*</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td></td>
<td>/* Update History:</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td></td>
<td>/*</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td></td>
<td>/* Rev Date Author Description of Change</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td></td>
<td>/* ------ -------- ------ ---</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td></td>
<td>/* 1.0 Dec 4, 2006 MWR Conversion of AN2493 SW to DZ60 Demo Board</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td></td>
<td>/*</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td></td>
<td>/* ;**</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td></td>
<td>/* This code is used along with EVB9S08DK60 board to demonstrate</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td></td>
<td>/* Stop Modes</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td></td>
<td>/* For Measurement purposes all headers/jumpers (Except the Power_Sel</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td></td>
<td>/* jumper) were removed from the demo board</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td></td>
<td>/* PTG0/BKGD on the demo board flashes at the interrupt rate</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td></td>
<td>/* When using Stop2 in order to re-establish BDM connection</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td></td>
<td>/* PTG0/BKGD must be held low on power up, then released.</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td></td>
<td>/* ;**</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td></td>
<td>/* ;**</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td></td>
<td>/* StopSelect and WakeSelect are used to configure the code</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td></td>
<td>/* ;**</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td></td>
<td>/* To test Stop2 RTC</td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td></td>
<td>/* StopSelect = %00000010 WakeSelect = %00000010</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td></td>
<td>/*</td>
</tr>
<tr>
<td>36</td>
<td>36</td>
<td></td>
<td>/* To test Stop3</td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td></td>
<td>/* StopSelect = %00000100 WakeSelect = %00000001</td>
</tr>
<tr>
<td>38</td>
<td>38</td>
<td></td>
<td>/*</td>
</tr>
<tr>
<td>39</td>
<td>39</td>
<td></td>
<td>/* To test Stop3 RTC Internal</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td></td>
<td>/* StopSelect = %00000100 WakeSelect = %00000010</td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td></td>
<td>/*</td>
</tr>
<tr>
<td>42</td>
<td>42</td>
<td></td>
<td>/* To test Stop3 RTC External</td>
</tr>
<tr>
<td>43</td>
<td>43</td>
<td></td>
<td>/* StopSelect = %00000100 WakeSelect = %00000010</td>
</tr>
<tr>
<td>44</td>
<td>44</td>
<td></td>
<td>;**</td>
</tr>
<tr>
<td>4339</td>
<td>4289i</td>
<td></td>
<td>;include "derivative.inc"</td>
</tr>
<tr>
<td>4375</td>
<td>46</td>
<td></td>
<td>ENDIF</td>
</tr>
<tr>
<td>4376</td>
<td>47</td>
<td></td>
<td>; export symbols</td>
</tr>
<tr>
<td>4377</td>
<td>48</td>
<td></td>
<td>;</td>
</tr>
<tr>
<td>4378</td>
<td>49</td>
<td></td>
<td>XDEF_Startup</td>
</tr>
<tr>
<td>4379</td>
<td>50</td>
<td></td>
<td>ABSENTRY_Startup</td>
</tr>
<tr>
<td>4380</td>
<td>51</td>
<td></td>
<td>;</td>
</tr>
<tr>
<td>4381</td>
<td>52</td>
<td></td>
<td>;**</td>
</tr>
<tr>
<td>4382</td>
<td>53</td>
<td></td>
<td>;SELECT STOP MODE AND WAKE UP SOURCE HERE</td>
</tr>
<tr>
<td>4383</td>
<td>54</td>
<td></td>
<td>;</td>
</tr>
<tr>
<td>4384</td>
<td>55</td>
<td>0000 0004</td>
<td>StopSelect: equ %00000010 ;Select Stop Mode Here</td>
</tr>
<tr>
<td>4385</td>
<td>56</td>
<td></td>
<td>;</td>
</tr>
</tbody>
</table>

HCS08 Automotive Low-Power Modes, Rev. 0
Stop2 Mode selected
Stop3 Mode Selected

If more than 1 mode is selected, the lowest stop mode is set
If no selection is made, Stop3 is chosen

WakeSelect: equ %00000010 ; Select Method of wake up (Stop2,3)

Pin Interrupt wake selected (For Stop3)
RTC Internal wake selected (LPO)
RTC external wake Selected (For Stop3)

If No selection is made, Pin Interrupt is selected

IMPORTANT REGISTER INITS

initSPMCl: equ %0010100 ; Disable LVD in stop
Demonstration Software

HCS08 Automotive Low-Power Modes, Rev. 0

Freescale Semiconductor

11
Demonstration Software

4475 146 a00190F 26 12 bne Stop2Recovery ;If = 0 was normal reset
4476 147
4477 148 ;This begins the path of a normal reset (Not stop2 recovery)
4478 149
4479 150 INIT:
4480 151
4481 152 ;**
4482 153 ;FIRST setup SPMSC2 to to the proper stop mode
4483 154 a001911 A6 04 lda #StopSelect
4484 155 a001913 B7 80 sta StopSet
4485 156
4486 157 a001915 02 80 02 brset 1,StopSet,Set_Stop2
4487 158
4488 159 Set_Stop3:
4489 160 a001918 20 09 bra StopSelectDone ;Reset state of SPMSC2 selects stop3
4490 161
4491 162 Set_Stop2:
4492 163 a00191A B6 00 lda initSPMSC2 ;enable stop2
4493 164 a00191C AA 01 ora #mSPMSC2_PPDC
4494 165 a00191E C7 180A sta SPMSC2
4495 166
4496 167
4497 168 a001921 20 00 bra StopSelectDone
4498 169
4499 170
4500 171 StopSelectDone:
4501 172
4502 173 ;**
4503 174 Stop2Recovery: ;Initialize before PDACK
4504 175 ;**
4505 176 ;Now set up the selected wakeup source
4506 177 a001923 A6 02 lda #WakeSelect
4507 178 a001925 B7 81 sta WakeSet
4508 179 a001927 00 81 08 brset 0,WakeSet,InitPinI
4509 180 a00192A 02 81 26 brset 1,WakeSet,InitRTCint
4510 181 a00192D 04 81 29 brset 2,WakeSet,InitRTCext
4511 182 a001930 20 31 bra WakeSelectDone
4512 183
4513 184 InitPinI:
4514 185
4515 186 a001932 A6 00 lda #0
4516 187 a001934 C7 1846 sta PTAES ;Select low level for interrupt
4517 188
4518 189 a001937 C6 1840 lda PTAPE
4519 190 a00193A AA 10 ora #mPTAPE_PTAPE4 ;Enable PTA4 pullup
4520 191 a00193C C7 1840 sta PTAPE
4521 192
4522 193 a00193F C6 1845 lda PTAPS
4523 194 a001942 AA 10 ora #mPTAPS_PTAPS4 ;Enable PTA4 interrupt
4524 195 a001944 C7 1845 sta PTAPS
4525 196
4526 197 a001947 B6 04 lda mPTASC_PTAACK ;Clear Pending Pin Interrupts
4527 198 a001949 C7 1844 sta PTASC
4528 199
4529 200 a00194C BA 02 ora mPTASC_PTAIE ;Enable PortA Pin Interrupts
4530 201 a00194E C7 1844 sta PTASC
4531 202
4532 203 a001951 20 10 bra WakeSelectDone
4533 204 InitRTCint:
4534 205 a001953 A6 17 lda #$17 ;Enable LPO RTC Interrupts 1s timeout
4535 206 a001955 B7 6C sta RTCSC
4536 207 a001957 20 0A bra WakeSelectDone
4537 208 InitRTCext
4538 209 a001959 A6 3F lda #$3F ;External clock bit set
4539 210 ;Enable RTC Interrupts long timeout
4540 211 a00195B B7 6C sta RTCSC
4541 212 a00195D 6E 37 49 mov #initMCGC2,MCGC2 ;sets up external clock option
4542 213 a001960 6E 04 48 mov #initMCGC1,MCGC1 ;8MHz ext xtal on demo board
4543 214 WakeSelectDone
4544 215
4545 216 ;**
;Initialize all I/O to achieve Low Power
Init_IO

;Make All unused I/O Outputs Driving low
Init_IO

mov #mIRQSC_IRQPE,IRQSC ;pull-up and enable IRQ

;Make All unused I/O Outputs Driving low
mov #$EF,PTADD ;ADDR
mov #$FF,PTBDD ;BDDR
mov #$FF,PTCDD ;CDDR
mov #$FF,PTDDD ;DDDR
mov #$FF,PTEDD ;EDDR
mov #$FF,PTFDD ;FDDR
mov #$FF,PTGDD ;GDDR

;***********Interrupt Service Routines*******************************

;Acknowledge Pin Interrupt
ora #mPTASC_PTAACK
sta PTASC

;Toggle LED Here
eor #mPTCD_PTCD0
sta PTCD

;Wait while IRQ is low (Debounce)

;***********Vectors**

; Reset

; Acknowledge RTC Interrupt
ora #mRTCSC_RTIF
sta RTCSC

; Acknowledge RT Interrupt
orc #mPTCD_PTCD0
sta PTCD

; Toggle LED Here
orc #mPTCD_PTCD0
sta PTCD

; Toggle LED where

; Start up

; Vectors

; Acknowledge Pin Interrupt
ora #mPTASC_PTAACK
sta PTASC

; Toggle LED Here
orc #mPTCD_PTCD0
sta PTCD

; Toggle LED Here
orc #mPTCD_PTCD0
sta PTCD
THIS PAGE IS INTENTIONALLY BLANK
Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.