Introduction

The purpose of this application note is to describe the use of the E-meter PLM demonstration board both in standalone and network mode. The E-meter demonstration board can be used as a guideline to design a typical energy-meter board for smart metering applications.

The document describes how to configure the board and how to interact with it; buttons, LEDs, configuration jumpers, and all hardware components used are described in detail, as well as the meaning of LCD data. A full description of the power line communication and its configuration and commands is provided too.

The E-meter demonstration board is based on the STM32F103VE microcontroller, ST7580 PLM module, and the STPMC1 poly-phase energy metering IC. It implements a PLM smart-meter node which allows the final utility to monitor energy consumption and other electrical parameters on one or more phases.

The voltage, current, power, power factor, THD, active and reactive energy, and other stored info can be shown on an LCD locally, or sent to a PLM data concentrator through a power line communication network.

- **Section 1** describes document and library rules
- **Section 2** describes the smart E-meter hardware demonstration board, its modes, uses and limitations
- **Section 3** highlights how to use the E-meter board in a PLC network and describes the PLM frames to be used in order to manage the board from another PLM node
- **Section 4** shows board schematics and the BOM list. Refer to UM0997 for more hardware details.
Contents

1. Document and library rules ... 5
 1.1. Acronyms .. 5

2. E-meter PLM demonstration board ... 6
 2.1. Board introduction ... 6
 2.2. Main hardware components ... 7
 2.3. Power-on and board use ... 9
 2.3.1. STEVAL-IPE010V1 energy-meter board use 10
 2.3.2. E-meter application running 11
 2.3.3. E-utility application running 12
 2.4. Board and application limitations 13

3. PLM network and frames .. 14
 3.1. PLM Network parameters ... 14
 3.2. Smart E-meter use inside a PLM network 15

4. BOM list ... 18

5. Schematics ... 35

6. References ... 48

7. Revision history .. 49
List of tables

Table 1. List of acronyms ... 5
Table 2. Jumpers default configuration .. 9
Table 3. PHY layer configuration .. 14
Table 4. Command set ... 15
Table 5. Class set ... 15
Table 6. Data structures ... 16
Table 7. BOM ... 18
Table 8. Document revision history .. 49
List of figures

Figure 1. STEVAL-IPP001V2 E-meter PLM demonstration board .. 6
Figure 2. STEVAL-IPP001V2 E-meter demonstration board block diagram 7
Figure 3. STEVAL-IPP001V2 hardware description .. 8
Figure 4. Phase system cabling schematic ... 11
Figure 5. STEVAL-IHP001V2 E-meter application view .. 11
Figure 6. STEVAL-IHP001V2 E-utility application view ... 12
Figure 7. Commands format summary .. 16
Figure 8. Top ... 35
Figure 9. Metrology board connector ... 36
Figure 10. User interface .. 36
Figure 11. LCD connector section .. 37
Figure 12. MCU schematic ... 38
Figure 13. RTC calibration, meter and LCD level .. 39
Figure 14. MEMS module connector ... 40
Figure 15. General purpose configuration jumpers .. 40
Figure 16. Power line modem .. 41
Figure 17. System JTAG connector, ST7580UART interface, and 8051 program flash memory ... 42
Figure 18. Non-isolated zero-crossing, ST7580 reset button, current limit setting, and microcontroller connection ... 43
Figure 19. Power supply (part 1) ... 44
Figure 20. Power supply (part 2) ... 45
Figure 21. Power supply (part 3) ... 46
Figure 22. ZigBee module connector ... 46
Figure 23. USB connector .. 47
1 Document and library rules

This document uses the conventions described in the sections below.

1.1 Acronyms

Table 1 lists the acronyms used in this document.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP</td>
<td>Application</td>
</tr>
<tr>
<td>API</td>
<td>Application programming interface</td>
</tr>
<tr>
<td>HAL</td>
<td>Hardware abstraction layer</td>
</tr>
<tr>
<td>RTOS</td>
<td>Real-time operating system</td>
</tr>
<tr>
<td>PLM</td>
<td>Power line modem</td>
</tr>
<tr>
<td>PLC</td>
<td>Power line communication</td>
</tr>
<tr>
<td>MCU</td>
<td>Microcontroller unit</td>
</tr>
<tr>
<td>SPI</td>
<td>Serial peripheral interface</td>
</tr>
<tr>
<td>OOP</td>
<td>Object oriented programming</td>
</tr>
</tbody>
</table>
2 E-meter PLM demonstration board

2.1 Board introduction

The application described in this document refers to the STEVAL-IPP001V2 demonstration board (see related UM0997 user manual).

The E-meter demonstration board can be used as a guideline to design a typical energy-meter board for smart metering applications. It was designed to include advanced features as well as to fit the requirements for next generation energy-meters. These extra features can be added to the board by modules for easy customizing. The board includes the following functions shown in the block diagram of Figure 2:

- Energy measurement by external metrology board
- Power line communication up to 28.8 kbps
- LCD display to show energy consumption information
- USB and RS232/IrDA connectivity
- Optional ZigBee® communication capability
- Optional MEMS module support
- Expansion capability for smartcard interface.
Warning: The board must be used only by expert technicians. Due to the high voltage (220 Vac) special care should be taken with regard to user safety. There is no protection against accidental human contact with a high voltage. After disconnection of the board from the mains, none of the live parts should be touched immediately because of the energized capacitors. It is mandatory to use a mains insulation transformer to perform any debugging/tests on the board in which debugging and test instruments such as USB-JTAG dongles, spectrum analyzers, or oscilloscopes are used. Do not connect any oscilloscope probes to high voltage sections in order to avoid damaging instruments and demonstration tools. ST assumes no responsibility for any consequences which may result from the improper use of this tool.

2.2 Main hardware components

The E-meter demonstration board main hardware components are:
- An STM32F103VE microcontroller running the application firmware
- An external STPMC1 multiphase energy metering IC; the external STEVAL-IPE010V1 demonstration board based on STPMC1 has been used in this firmware release
- An MB542B-01 320x240 color TFT LCD module; used to show data locally
- An ST7580 power line modem; used to provide PLC connectivity to the system
- 3 status LEDs; 1 green, 1 yellow, 1 red LED for application status scope
- 5 configuration jumpers (SW19, 20, 21, 22, and 23); used for software configuration scope
- 1 user button (S1) and 1 joystick (U8); used for user application scope
- 1 microcontroller reset button (SW4); used to force an MCU reset
- 1 modem reset button (SW1); used to force an ST7580 reset.

A general description of the E-meter PLM demonstration board is provided in Figure 3:

Figure 3. STEVAL-IPP001V2 hardware description

1. TFT LCD color display 320x240
2. General purpose application red, green, yellow LEDs
3. General purpose application joystick; switch meter user data
4. General purpose user application button; switch the phase view on LCD from 3, R, S, T
5. Energy-meter configuration jumper (SW10) to use SPI-MISO or SPI-MOSI for data line LCD configuration jumpers (SW16, SW17, SW18) to control LCD via SPI or GPIO
6. RS232 USART connector
7. USB connector
8. General purpose application configuration jumpers (SW19, SW20, SW21, SW22, SW23)
9. Energy-meter external board connector (e.g. IPE010V1)
10. STM32 JTAG 20-pin connector
11. STM32 boot configuration jumpers (SW7, SW9)
12. Enable/disable DL2 LED
13. Enable/disable DL1 LED
14. STM32F103VE 32-bit high density microcontroller
15. Battery enabled/disabled configuration jumper (SW12)
16. Battery for STM32 VBAT supply
17. 85 V - 256 V board power supply. Suggested 110 V - 220 Vac
18. ST7580 JTAG 10-pin connector
19. ST7580 power line modem IC
20. RTC calibration/normal mode configuration jumpers
21. STM32 microcontroller reset button
22. ST7580 PLM IC UART connection connector
23. ST7580 PLM IC reset button.

2.3 Power-on and board use

Before turning on the board for the first time, make sure the following configuration jumpers are fitted or unfitted according to the following default table:

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP6</td>
<td>DL1 enable</td>
<td>Fitted</td>
</tr>
<tr>
<td></td>
<td>– Fitted: DL1 enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Not fitted: DL1 disabled</td>
<td></td>
</tr>
<tr>
<td>JP7</td>
<td>DL2 enable</td>
<td>Fitted</td>
</tr>
<tr>
<td></td>
<td>– Fitted: DL2 enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Not fitted: DL2 disabled</td>
<td></td>
</tr>
<tr>
<td>JP8</td>
<td>To connect mains ground to board ground</td>
<td>Not fitted</td>
</tr>
<tr>
<td></td>
<td>– Fitted: grounds connected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Not fitted: grounds not connected</td>
<td></td>
</tr>
<tr>
<td>SW3, SW5, SW6</td>
<td>EEPROM address setting</td>
<td>Fitted (2-3)</td>
</tr>
<tr>
<td></td>
<td>– Fitted (1-2): address bit 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Fitted (2-3): address bit 0</td>
<td></td>
</tr>
<tr>
<td>SW7, SW9</td>
<td>Boot option</td>
<td>Fitted (1-2)</td>
</tr>
<tr>
<td></td>
<td>– Fitted (1-2): boot option bit 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Fitted (2-3): boot option bit 1</td>
<td></td>
</tr>
<tr>
<td>SW12</td>
<td>STM32 VBAT option</td>
<td>Fitted (1-2)</td>
</tr>
<tr>
<td></td>
<td>– Fitted (1-2): VBAT from power supply</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Fitted (2-3): VBAT from battery θ</td>
<td></td>
</tr>
<tr>
<td>SW13, SW14, SW15</td>
<td>RTC calibration mode</td>
<td>Fitted (1-2)</td>
</tr>
<tr>
<td></td>
<td>– Fitted (1-2): normal mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Fitted (2-3): RTC calibration mode</td>
<td></td>
</tr>
</tbody>
</table>
Once configuration is set according to the above description, connect and cable the STEVAL-IPE010V1 poly-phase energy-meter demonstration board before powering on the smart E-meter board.

2.3.1 STEVAL-IPE010V1 energy-meter board use

The STEVAL-IPE010V1 must be calibrated. It means that STPMC1 OTP calibration registers have been calibrated in order to read coherent voltage, current, and energy data through the STPMS1 daughter boards connected to the board for each monitored phase. Figure 4 shows the cabling-schema for the STEVAL-IPP001V2 plus STEVAL-IPE010V1 3-phase system.

It is also possible to cable the full system in mono-phase schema, using one daughter sensor board only (on top of STEVAL-IPE010V1) and configuring STPMC1 in order to work in mono-phase mode (see the STPMC1 datasheet).
2.3.2 E-meter application running

Once the 3-phase system is put in place, according to the previous description, the system is powered on, the smart E-meter application shows the following view on the LCD:

1. Phase identification (3, R, S, T)
2. Energy counter in watts. Red digit represents tenths of a watt
3. Phase current in ampere
4. Phase reactive energy in kVar
5. Power factor or “no load” if no load condition is detected
6. Meter user data; use joystick to move shown data
7. Phase THD parameter in percentage
8. Phase wide active power in kWatt

If the application is running without any problems a green LED (LED1) is blinking. During counter moving, the red LED (LED0) blinks every time the red number (tenths of a watt) moves to the next step.

To move from a phase view to the next phase view, it’s necessary to press user button S1. Joystick U8 allows to scroll through user data.

2.3.3 E-utility application running

An E-utility application managing up to two smart E-meters has been implemented to test the smart-meter power line communication. The board used to run the E-utility application is the same STEVAL-IPP001V2 and after powering on the board, the E-utility application shows the following view (Figure 6) on the LCD:

Figure 6. STEVAL-IHP001V2 E-utility application view

1. Tablet used to switch the managed E-meter (up to two E-meters can be managed using the joystick)
2. E-meter identification code (also reported on the E-meter LCD view)
3. The selected month which asks the E-meter for data. Use the joystick button to change the month used in the request and use button S1 to send the request via PLM
4. Average power stored for last quarter
5. Average power stored for last year
6. Date and time
7. Maximum demand power for the selected month
8. Average power stored for last six months
9. Total energy consumption of the selected E-meter.

Joystick left/right keys are used to move from the first to the second managed meter; joystick key press is used to change the selected month; user button S1 is used to send a request to the selected E-meter.

2.4 Board and application limitations

The smart E-meter is for evaluation purposes only. The board and running applications have the following limitations:

- Smart E-meter application counter supposes to count active positive energy only. Even if STPMC1 is able to count negative energy, the application doesn't support this kind of energy in this release.
- High voltage disturbance. Sometimes a high voltage disturbance, such as button line spike (and so a button action), is observed during turn on/off of the electric load connected to the smart E-Plug.
- A 7-byte static address has been assigned via firmware to the smart E-meter application, as below. If it is necessary to use more than one smart E-Meter demonstration board in a demonstrator system, this address must be changed manually in order to differentiate STEVA-IPP001V2 boards:

```c
#ifdef METER_1
    u8 DL_ADDRESS[7] = {0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF, 0x0};
#else
    u8 DL_ADDRESS[7] = {0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xF0, 0x0};
#endif.
```

In a future release a limited set of MAC addresses could be managed using the board configuration jumpers.
3 PLM network and frames

This section describes how to use the meter board inside a network with a master/slave architecture. The network includes several meters (slaves) and one data concentrator (master). Each meter maintains a database with the energy consumption data statistics which are stored in an external EEPROM. The master can read the statistics data of each meter, requesting them through commands transferred using the PLM communication.

3.1 PLM Network parameters

During startup each node configures the physical layer of the ST7580 with the following parameters:

Table 3. PHY layer configuration

<table>
<thead>
<tr>
<th>General settings 1</th>
<th>0x11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency pair</td>
<td>72-86 kHz</td>
</tr>
<tr>
<td>TX channel</td>
<td>High channel</td>
</tr>
<tr>
<td>Rx channel</td>
<td>Only high channel</td>
</tr>
<tr>
<td>Zero-crossing synchronization</td>
<td>Asynchronous</td>
</tr>
<tr>
<td>Current control</td>
<td>Enabled</td>
</tr>
<tr>
<td>General settings 2</td>
<td>0x15</td>
</tr>
<tr>
<td>TX modulation</td>
<td>BPSK</td>
</tr>
<tr>
<td>TX gain</td>
<td>21</td>
</tr>
<tr>
<td>General settings 3</td>
<td>0x0E</td>
</tr>
<tr>
<td>RX high channel modulation</td>
<td>Any PSK</td>
</tr>
<tr>
<td>RX low channel modulation</td>
<td>Any PSK</td>
</tr>
<tr>
<td>PSK preamble length</td>
<td>32 bits</td>
</tr>
<tr>
<td>FSK modulation settings</td>
<td>0x3A</td>
</tr>
<tr>
<td>Baud rate</td>
<td>2400 bps</td>
</tr>
<tr>
<td>Deviation</td>
<td>1</td>
</tr>
<tr>
<td>Preamble length</td>
<td>32 bits</td>
</tr>
<tr>
<td>Unique word length</td>
<td>16 bits</td>
</tr>
<tr>
<td>FSK modulation unique word LSB</td>
<td>0x9B</td>
</tr>
<tr>
<td>FSK modulation unique word MSB</td>
<td>0x58</td>
</tr>
</tbody>
</table>

The master address is configured as AA-BB-CC-DD-EE-00 in hexadecimal format. For a complete list of the possible modem settings refer to the ST7580 data brief.
3.2 Smart E-meter use inside a PLM network

A demo application layer for metering applications has been implemented on top of the PLM communication protocol. The layer implements a command/response protocol with three kinds of frames:

<table>
<thead>
<tr>
<th>Command name</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GET</td>
<td>0x00</td>
<td>Command to read database variable of the remote meter</td>
</tr>
<tr>
<td>SET</td>
<td>0x01</td>
<td>Command to write database variable of the remote meter</td>
</tr>
<tr>
<td>RSP</td>
<td>0x02</td>
<td>Response to a GET request</td>
</tr>
</tbody>
</table>

The database variables are identified by the classes described in Table 5. The same table shows how some classes have sub-classes and also the access permission.

<table>
<thead>
<tr>
<th>Class name</th>
<th>Class code</th>
<th>Sub-class name</th>
<th>Sub-class code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL_CONS</td>
<td>0x00</td>
<td>N/A</td>
<td>N/A</td>
<td>Total energy consumption variable (read only)</td>
</tr>
<tr>
<td>AV_MD</td>
<td>0x01</td>
<td>N/A</td>
<td>N/A</td>
<td>Average maximum demand variables (read only)</td>
</tr>
<tr>
<td>TARIFF_LIST</td>
<td>0x02</td>
<td>TARIFF_NUM</td>
<td>0x00</td>
<td>Number of tariff managed by the meter (read/write)</td>
</tr>
<tr>
<td>TARIFF</td>
<td></td>
<td>TARIFF</td>
<td>0x01</td>
<td>Tariff variable (read/write)</td>
</tr>
<tr>
<td>TAMPER_LIST</td>
<td>0x03</td>
<td>N/A</td>
<td>N/A</td>
<td>List of detected tamper by the meter (read only)</td>
</tr>
<tr>
<td>MD_DB</td>
<td>0x04</td>
<td>DAY</td>
<td>0x00</td>
<td>Daily based maximum demand variable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MONTH</td>
<td>0x01</td>
<td>Monthly based maximum demand variable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUARTER</td>
<td>0x02</td>
<td>Quarter based maximum demand variable</td>
</tr>
<tr>
<td>MD_CONFIG</td>
<td>0x05</td>
<td>N/A</td>
<td>N/A</td>
<td>Maximum demand storage configuration (read/write)</td>
</tr>
<tr>
<td>DEMO</td>
<td>0x06</td>
<td>N/A</td>
<td>N/A</td>
<td>Command class used in the demo application</td>
</tr>
</tbody>
</table>

Figure 7 summarizes the generic application layer frame format and also the format for each command.
The meter firmware is released with a monthly based configuration of the maximum demand and the master implements only the DEMO class command which allows the reading of the total consumption, the average maximum demand, and the maximum demand of the month specified by the month index. The data transferred have the following structures:

Table 6. Data structures

<table>
<thead>
<tr>
<th>Variable</th>
<th>Structure format</th>
</tr>
</thead>
</table>
| Tariff | `typedef struct tariff {
 float rate;
 long long kwh;
 u32 pulse_count;
 DATE_T change_t;
 u8 next;
 } TARIFF_T;` |
| Tamper info | `typedef struct {
 CONS_T cons;
 DATE_T f_tamp_box_date;
 DATE_T l_tamp_box_date;
 DATE_T f_tamp_fraud_date;
 DATE_T l_tamp_fraud_date;
 DATE_T tamper_time;
 DATE_T fail_time;
 } TAMPER_INFO_T;` |
Table 6. Data structures (continued)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Structure format</th>
</tr>
</thead>
</table>
| Maximum demand | ```
typedef struct {
 MONTH_MD_DB_T DayStore;
 MD_T MonthStore[12];
 MD_T QuarterStore[4];
}MD_DB_T;
``` |
| Total consumption | ```
typedef struct {
   long long kwh;
   u32 pulse_count;
} CONS_T;
``` |
| Average maximum demand | ```
typedef struct {
 u32 last3;
 u32 second_last3;
 u32 third_last3;
 u32 fourth_last3;
 u32 last6;
 u32 last9;
 u32 last12;
}AV_MD_T;
``` |
| Maximum demand storage configuration | ```
typedef struct {
   u32 period; //minutes
   MD_STORAGE_T storage;
   u32 sample_time; //mSec.
} MD_CONFIG_T;
``` |
Table 7. BOM

<table>
<thead>
<tr>
<th>Reference</th>
<th>Part / value</th>
<th>Tolerance</th>
<th>Voltage current</th>
<th>Watt</th>
<th>Technology information</th>
<th>Package-footprint</th>
<th>Manufacturer</th>
<th>Manufacturer code</th>
<th>RS/Distrelec/other code</th>
<th>More info</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM3</td>
<td>IND-EPCOS-B82721K</td>
<td>Power line chokes 10 mH 0.7 A</td>
<td>Through hole</td>
<td>EPCOS</td>
<td>B82721K2701N020</td>
<td>Digi-Key: 495-2739-ND</td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN1</td>
<td>PORT 0</td>
<td>R/A DB9 male connector (plug)</td>
<td>Through hole</td>
<td>Any</td>
<td>Distrelec: 124164</td>
<td></td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN2</td>
<td>USB_TYPEB</td>
<td>USB socket</td>
<td>Through hole</td>
<td>Any</td>
<td>Distrelec: 124164</td>
<td></td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>120 pF</td>
<td>5 %</td>
<td>50 V</td>
<td>Any</td>
<td>Distrelec: 124164</td>
<td></td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3, C48</td>
<td>100 pF</td>
<td>5 %</td>
<td>50 V</td>
<td>Any</td>
<td>Distrelec: 124164</td>
<td></td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Part / value</td>
<td>Tolerance %</td>
<td>Voltage / current</td>
<td>Watt</td>
<td>Technology information</td>
<td>Package-footprint</td>
<td>Manufacturer</td>
<td>Manufacturer code</td>
<td>RS/Distrelec/other code</td>
<td>More info</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>C4, C7, C13, C14, C15, C17, C18, C19, C21, C22, C43, C47, C49, C50, C51, C52, C53, C65, C66, C64, C75, C78, C79, C80, C81, C82, C83, C87, C88, C89</td>
<td>100 nF</td>
<td>10 %</td>
<td>25 V</td>
<td>X7R ceramic capacitor</td>
<td>SMD 0603</td>
<td>Any</td>
<td></td>
<td></td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>C5, C12, C16, C23, C42</td>
<td>10 µF</td>
<td>20 %</td>
<td>10 V</td>
<td>Y5 V ceramic capacitor</td>
<td>SMD 1206</td>
<td>Any</td>
<td></td>
<td></td>
<td>RS:434-8097</td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>220 nF X2</td>
<td>20 %</td>
<td>305 Vac</td>
<td>EMI suppression X2 capacitor</td>
<td>Through hole 15 mm lead spacing</td>
<td>EPCOS B32922A2 224M</td>
<td>RS:497-4129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1, C85</td>
<td>10 nF</td>
<td>10 %</td>
<td>25 V</td>
<td>X7R ceramic capacitor</td>
<td>SMD 0603</td>
<td>Any</td>
<td></td>
<td></td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>2.2 nF</td>
<td>5 %</td>
<td>25 V</td>
<td>COG ceramic capacitor</td>
<td>SMD 0603</td>
<td>Any</td>
<td></td>
<td></td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>120 pF</td>
<td>5 %</td>
<td>50 V</td>
<td>COG ceramic capacitor</td>
<td>SMD 0603</td>
<td>Any</td>
<td></td>
<td></td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>10 nF</td>
<td>10 %</td>
<td>50 V</td>
<td>X7R ceramic capacitor</td>
<td>SMD 0805</td>
<td>Any</td>
<td></td>
<td></td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>15 nF</td>
<td>10 %</td>
<td>50 V</td>
<td>X7R ceramic capacitor</td>
<td>SMD 0805</td>
<td>Any</td>
<td></td>
<td></td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Part / value</td>
<td>Tolerance</td>
<td>Voltage</td>
<td>Watt</td>
<td>Technology information</td>
<td>Package-footprint</td>
<td>Manufacturer</td>
<td>Manufacturer code</td>
<td>RS/Distrelec/other code</td>
<td>More info</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>-----------</td>
<td>---------</td>
<td>------</td>
<td>------------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>C20</td>
<td>47 µF</td>
<td>10 %</td>
<td>16 V</td>
<td></td>
<td>Tantalum capacitor</td>
<td>SMD 6032-28</td>
<td>Any</td>
<td></td>
<td>RS: 407-0047</td>
<td></td>
</tr>
<tr>
<td>C24, C25</td>
<td>82 µF</td>
<td>20 %</td>
<td>350 V</td>
<td></td>
<td>Aluminum electrolytic capacitor</td>
<td>Through hole 18 mm diameter, 7.5 mm lead spacing</td>
<td>Panasonic</td>
<td>EEUED2V 820S</td>
<td>RS: 526-2247</td>
<td></td>
</tr>
<tr>
<td>C26</td>
<td>33 nF X2</td>
<td>10 %</td>
<td>250 Vac</td>
<td></td>
<td>Chip monolithic X2 ceramic capacitors</td>
<td>SMD 2220</td>
<td>MuRata</td>
<td>GA355XR7 GB333KY06L</td>
<td>Distrelec: 830079</td>
<td></td>
</tr>
<tr>
<td>C27</td>
<td>1000 µF 16 V ZL</td>
<td>20 %</td>
<td>16 V</td>
<td></td>
<td>Low ESR electrolytic capacitor</td>
<td>Through hole 10 mm diameter, 5 mm lead spacing</td>
<td>Rubycon</td>
<td>16ZL1000 M10X20</td>
<td>Distrelec: 801841</td>
<td></td>
</tr>
<tr>
<td>C28</td>
<td>470 µF 16 V ZL</td>
<td>20 %</td>
<td>16 V</td>
<td></td>
<td>Low ESR electrolytic capacitor</td>
<td>Through hole 10 mm diameter, 5 mm lead spacing</td>
<td>Rubycon</td>
<td>16ZL470M 10X12.5</td>
<td>Distrelec: 801839</td>
<td></td>
</tr>
<tr>
<td>C29, C30, C38, C67, C68, C69, C70, C71, C77</td>
<td>100 nF</td>
<td>10 %</td>
<td>25 V</td>
<td></td>
<td>X7R ceramic capacitor</td>
<td>SMD 0805</td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C31</td>
<td>3.3 µF</td>
<td>20 %</td>
<td>35 V</td>
<td></td>
<td>Aluminum electrolytic capacitor</td>
<td>Through hole</td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Below is the image of one page of a document, as well as some raw textual content that was previously extracted for it. Just return the plain text representation of this document as if you were reading it naturally.

Table 7. BOM (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Part / value</th>
<th>Tolerance %</th>
<th>Voltage current</th>
<th>Watt</th>
<th>Technology information</th>
<th>Package-footprint</th>
<th>Manufacturer</th>
<th>Manufacturer code</th>
<th>RS/Distrelec/other code</th>
<th>More info</th>
</tr>
</thead>
<tbody>
<tr>
<td>C32</td>
<td>330 µF</td>
<td>20 %</td>
<td>16 V</td>
<td></td>
<td>Low ESR electrolytic capacitor</td>
<td>Through hole</td>
<td>Panasonic</td>
<td>EEUFC1C331</td>
<td>RS: 315-0451</td>
<td></td>
</tr>
<tr>
<td>C33</td>
<td>100 µF 10 V</td>
<td>20 %</td>
<td>16 V</td>
<td></td>
<td>Low ESR electrolytic capacitor</td>
<td>Through hole</td>
<td>Rubycon</td>
<td>16ZLH100M5x11</td>
<td>Distrelec: 801183</td>
<td></td>
</tr>
<tr>
<td>C34</td>
<td>2.2 nF - Y1</td>
<td>20 %</td>
<td>250 Vac</td>
<td></td>
<td>Y1 ceramic multi-layer capacitors</td>
<td>Through hole</td>
<td>MuRata</td>
<td>DE1E3IX222MA5B</td>
<td>Farnell: 3531995</td>
<td></td>
</tr>
<tr>
<td>C35</td>
<td>1 nF</td>
<td>5 %</td>
<td>50 V</td>
<td></td>
<td>COG ceramic capacitor</td>
<td>SMD 0805</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>C36</td>
<td>470 nF</td>
<td>10 %</td>
<td>16 V</td>
<td></td>
<td>X7R ceramic capacitor</td>
<td>SMD 0805</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>C37</td>
<td>4.7 nF</td>
<td>10 %</td>
<td>50 V</td>
<td></td>
<td>X7R ceramic capacitor</td>
<td>SMD 0805</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>C39</td>
<td>4.7 µF</td>
<td>20 %</td>
<td>25 V</td>
<td></td>
<td>electrolytic capacitor</td>
<td>Through hole</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>C40</td>
<td>15 pF</td>
<td>5 %</td>
<td>50 V</td>
<td></td>
<td>COG ceramic capacitor</td>
<td>SMD 0805</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>C41</td>
<td>4.7 pF</td>
<td>5 %</td>
<td>50 V</td>
<td></td>
<td>COG ceramic capacitor</td>
<td>SMD 0805</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>C44, C45</td>
<td>1 nF</td>
<td>10 %</td>
<td>25 V</td>
<td></td>
<td>X7R ceramic capacitor</td>
<td>SMD 0603</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>C60, C61</td>
<td>10 pF</td>
<td>5 %</td>
<td>50 V</td>
<td></td>
<td>COG ceramic capacitor</td>
<td>SMD 0603</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>C62, C63</td>
<td>22 pF</td>
<td>5 %</td>
<td>50 V</td>
<td></td>
<td>COG ceramic capacitor</td>
<td>SMD 0603</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Part / value</td>
<td>Tolerance %</td>
<td>Voltage current</td>
<td>Watt</td>
<td>Technology information</td>
<td>Package-footprint</td>
<td>Manufacturer</td>
<td>Manufacturer code</td>
<td>RS/Distrelec/other code</td>
<td>More info</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
<td>------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>C72, C90</td>
<td>4.7 µF</td>
<td>20 %</td>
<td>10 V</td>
<td></td>
<td>Y5V ceramic capacitor</td>
<td>SMD 0805</td>
<td>MuRata</td>
<td>GRM21BF 51A475ZA 01L</td>
<td>Distrelec: 830046</td>
<td>Any</td>
</tr>
<tr>
<td>C76</td>
<td>4.7 nF</td>
<td>10 %</td>
<td>50 V</td>
<td></td>
<td>X7R ceramic capacitor</td>
<td>SMD 0805</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>C84</td>
<td>470 nF</td>
<td>10 %</td>
<td>16 V</td>
<td></td>
<td>X7R ceramic capacitor</td>
<td>SMD 0805</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>C86</td>
<td>10 µF</td>
<td>10 %</td>
<td>10 V</td>
<td></td>
<td>Tantalum capacitor</td>
<td>SMD 6032-28</td>
<td>Any</td>
<td>RS: 648-0575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C91, C92</td>
<td>47 nF</td>
<td>10 %</td>
<td>50 V</td>
<td></td>
<td>X7R ceramic capacitor</td>
<td>SMD 0805</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>DL1, D14</td>
<td>Green</td>
<td>20 mA</td>
<td></td>
<td></td>
<td>Green LED diode</td>
<td>SMD 0805</td>
<td>Kingbright</td>
<td>KP-2012MGC</td>
<td>RS: 466-3778</td>
<td></td>
</tr>
<tr>
<td>DL2, D15</td>
<td>Yellow</td>
<td>20 mA</td>
<td></td>
<td></td>
<td>Yellow LED diode</td>
<td>SMD 0805</td>
<td>Kingbright</td>
<td>KP-2012SYC</td>
<td>RS: 466-3835</td>
<td></td>
</tr>
<tr>
<td>D13</td>
<td>Red</td>
<td>20 mA</td>
<td></td>
<td></td>
<td>Red LED diode</td>
<td>SMD 0805</td>
<td>Kingbright</td>
<td>KP-2012SRC-PRV</td>
<td>RS: 466-3813</td>
<td></td>
</tr>
<tr>
<td>DZ1</td>
<td>P6KE200A</td>
<td>200 V</td>
<td>Transil diode</td>
<td></td>
<td></td>
<td></td>
<td>STMicroelectronics</td>
<td>P6KE200A</td>
<td>ST supply</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>LL4148</td>
<td>100 V/150 mA</td>
<td>Small signal rectifier</td>
<td></td>
<td>SMD DO213AA</td>
<td>Any</td>
<td>Any</td>
<td>RS: 652-7494</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>D3, D5</td>
<td>STPS1L30A</td>
<td>30 V/1 A</td>
<td>Low drop power Schottky rectifier</td>
<td></td>
<td>SMD SMA/DO-214AC</td>
<td>STMicroelectronics</td>
<td>STPS1L30A</td>
<td>ST supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Part / value</td>
<td>Tolerance %</td>
<td>Voltage (current)</td>
<td>Watt</td>
<td>Technology information</td>
<td>Package-footprint</td>
<td>Manufacturer</td>
<td>Manufacturer code</td>
<td>RS/Distrelec/other code</td>
<td>More info</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------------</td>
<td>------</td>
<td>------------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>D4</td>
<td>SM6T15CA</td>
<td></td>
<td></td>
<td></td>
<td>Transil diode</td>
<td>SMD SMB/DO-214AA</td>
<td>STMicroelectronics</td>
<td>SM6T15CA</td>
<td>ST supply</td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>SM6T6V8CA</td>
<td></td>
<td></td>
<td></td>
<td>Transil diode</td>
<td>SMD SMB/DO-214AA</td>
<td>STMicroelectronics</td>
<td>SM6T6V8CA</td>
<td>ST supply</td>
<td></td>
</tr>
<tr>
<td>D7, D9</td>
<td>SM4007</td>
<td>1000 V/1 A</td>
<td></td>
<td></td>
<td>Standard rectifier diode</td>
<td>SMD melf/DO-213AB</td>
<td>Any</td>
<td></td>
<td>RS: 505-4939</td>
<td></td>
</tr>
<tr>
<td>D8</td>
<td>STPS2150</td>
<td>150 V/2 A</td>
<td></td>
<td></td>
<td>Power Schottky rectifier diode</td>
<td>SMD SMA/DO-214AC</td>
<td>STMicroelectronics</td>
<td>STPS2150A</td>
<td>ST supply</td>
<td></td>
</tr>
<tr>
<td>D10</td>
<td>STTH108</td>
<td>800 V/1 A</td>
<td></td>
<td></td>
<td>High voltage ultralast rectifier</td>
<td>Through hole DO-41</td>
<td>STMicroelectronics</td>
<td>STTH108</td>
<td>ST supply</td>
<td></td>
</tr>
<tr>
<td>D11</td>
<td>STPS1150</td>
<td>150 V/1 A</td>
<td></td>
<td></td>
<td>Power Schottky rectifier diode</td>
<td>Through hole DO-41</td>
<td>STMicroelectronics</td>
<td>STPS1150</td>
<td>ST supply</td>
<td></td>
</tr>
<tr>
<td>D12</td>
<td>STPS1L60</td>
<td>60 V/1 A</td>
<td></td>
<td></td>
<td>Power Schottky rectifier diode</td>
<td>SMD SMA/DO-214AC</td>
<td>STMicroelectronics</td>
<td>STPS1L60A</td>
<td>ST supply</td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>2 A fuse</td>
<td>250 Vac/2 A</td>
<td></td>
<td></td>
<td>Fuse, time delay, 2 A</td>
<td>Through hole radial 5 mm lead spacing</td>
<td>BUSSMANN</td>
<td></td>
<td>BK/ETF 2 A</td>
<td>Farnell:30299 79</td>
</tr>
<tr>
<td>FB1, FB2, FB3</td>
<td>BLM21PG33</td>
<td>1500 mA</td>
<td></td>
<td></td>
<td>EMIFIL (Inductor type) chip ferrite bead, Impedance 330 ohm</td>
<td>SMD 0805</td>
<td>MuRata</td>
<td></td>
<td>BLM21PG331SN1</td>
<td>Digi-Key: BLM21PG331SN1D-ND</td>
</tr>
<tr>
<td>Reference</td>
<td>Part / value</td>
<td>Tolerance %</td>
<td>Voltage current</td>
<td>Watt</td>
<td>Technology information</td>
<td>Package- footprint</td>
<td>Manufacturer</td>
<td>Manufacturer code</td>
<td>RS/Distrelec/ other code</td>
<td>More info</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>IC1</td>
<td>ST3232EBDR</td>
<td></td>
<td></td>
<td></td>
<td>RS-232 drivers and receivers</td>
<td>SMD SO-16</td>
<td>STMicroelectronics</td>
<td>ST3232EBDR</td>
<td>ST supply</td>
<td></td>
</tr>
<tr>
<td>IC2</td>
<td>TFDU4301</td>
<td>IrDA</td>
<td>SMD</td>
<td></td>
<td></td>
<td></td>
<td>VISHAY semiconductor</td>
<td>TFDU4300-TR1</td>
<td>Farnell: 1469607</td>
<td></td>
</tr>
<tr>
<td>JP4, JP5, JP6, JP7</td>
<td>Close</td>
<td></td>
<td>2 way stripline connector</td>
<td>Through hole 2.54 mm pitch</td>
<td>Any</td>
<td></td>
<td></td>
<td>RS:251-8086</td>
<td>Mount with jumper: RS: 251-8503</td>
<td>There are no components mounted</td>
</tr>
<tr>
<td>JP8</td>
<td>Open</td>
<td>Not mounted</td>
<td>SMD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not mounted</td>
</tr>
<tr>
<td>J2</td>
<td>CON6A</td>
<td></td>
<td>6-way 2row vertical IDC box header</td>
<td>Through hole 2.54 mm pitch</td>
<td>Any</td>
<td></td>
<td></td>
<td>Distrelec: 121631</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J3</td>
<td>CON10AP</td>
<td></td>
<td>10-way 2row vertical IDC box header</td>
<td>Through hole 2.54 mm pitch</td>
<td>Any</td>
<td></td>
<td></td>
<td>RS: 473-8254</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J8</td>
<td>VDD_12 V</td>
<td></td>
<td>2-way horizontal header, 5.08 mm pitch</td>
<td>Through hole 5 mm pitch</td>
<td>Tyco Electronics</td>
<td>282815-2</td>
<td></td>
<td>RS: 361-7544</td>
<td>2-way screw terminal RS: 361-7320</td>
<td></td>
</tr>
<tr>
<td>J9</td>
<td>MAINS_CON</td>
<td>250 Vac / 2.5 A</td>
<td>Flush-type device plug C8 snap-in</td>
<td>Through hole</td>
<td>Schurter</td>
<td>4300.0099</td>
<td></td>
<td>Distrelec: 110275</td>
<td>Alternative: MULTICOMP</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Part / value</td>
<td>Tolerance %</td>
<td>Voltage current</td>
<td>Watt</td>
<td>Technology information</td>
<td>Package-footprint</td>
<td>Manufacturer</td>
<td>Manufacturer code</td>
<td>RS/Distrelec/other code</td>
<td>More info</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>------</td>
<td>------------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>J10</td>
<td>CON10</td>
<td></td>
<td></td>
<td></td>
<td>Right-angled IDC boxed header, 10 way 2row</td>
<td>Through hole 2.54 mm pitch</td>
<td>Any</td>
<td></td>
<td>RS: 473-8349</td>
<td></td>
</tr>
<tr>
<td>J11, J20</td>
<td>Jumper</td>
<td></td>
<td></td>
<td></td>
<td>2-way stripline connector</td>
<td>Through hole 2.54 mm pitch</td>
<td>Any</td>
<td></td>
<td>RS: 251-8086</td>
<td></td>
</tr>
<tr>
<td>J12</td>
<td>LCD connector</td>
<td></td>
<td></td>
<td></td>
<td>Mount 2 connectors: 8 way (2x4) double row stripline socket</td>
<td>Through hole 2.54 mm pitch</td>
<td>Any</td>
<td></td>
<td>RS: 488-1730</td>
<td></td>
</tr>
<tr>
<td>J15</td>
<td>JTAG</td>
<td></td>
<td></td>
<td></td>
<td>Right-angled IDC boxed header, 20 way 2row</td>
<td>Through hole 2.54 mm pitch 90°</td>
<td>Any</td>
<td></td>
<td>RS: 473-8377</td>
<td></td>
</tr>
<tr>
<td>J19</td>
<td>RTC_CAL</td>
<td></td>
<td></td>
<td></td>
<td>5-way stripline connector</td>
<td>Through hole 2.54 mm pitch</td>
<td>Any</td>
<td></td>
<td>RS: 251-8121</td>
<td></td>
</tr>
<tr>
<td>J21</td>
<td>SC_CON - NOT FIT</td>
<td>Not mounted</td>
<td></td>
<td></td>
<td>7-way stripline connector</td>
<td>Through hole 2.54 mm pitch</td>
<td>Not mounted</td>
<td></td>
<td>Not mounted</td>
<td></td>
</tr>
<tr>
<td>J22</td>
<td>CON3</td>
<td>Not mounted</td>
<td></td>
<td></td>
<td>3-way top entry socket (strip female)</td>
<td>Through hole 2.54 mm pitch</td>
<td>Any</td>
<td></td>
<td>RS: 488-1724</td>
<td>Not mounted</td>
</tr>
<tr>
<td>J23</td>
<td>CON2</td>
<td>Not mounted</td>
<td></td>
<td></td>
<td>2-way top entry socket (strip female)</td>
<td>Through hole 2.54 mm pitch</td>
<td>Any</td>
<td></td>
<td>RS: 488-1724</td>
<td>Not mounted</td>
</tr>
<tr>
<td>Reference</td>
<td>Part / value</td>
<td>Tolerance %</td>
<td>Voltage current</td>
<td>Watt</td>
<td>Technology information</td>
<td>Package-footprint</td>
<td>Manufacturer</td>
<td>Manufacturer code</td>
<td>RS/Distrelec/other code</td>
<td>More info</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-----</td>
<td>------------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>J24</td>
<td>ZigBee - CONN1</td>
<td>Not mounted</td>
<td></td>
<td></td>
<td>6-way top entry socket (strip female)</td>
<td>Through hole 2.54 mm pitch</td>
<td>Any</td>
<td></td>
<td>RS: 488-1724</td>
<td>Not mounted</td>
</tr>
<tr>
<td>J25</td>
<td>ZigBee - CONN2</td>
<td>Not mounted</td>
<td></td>
<td></td>
<td>6-way top entry socket (strip female)</td>
<td>Through hole 2.54 mm pitch</td>
<td>Any</td>
<td></td>
<td>RS: 488-1724</td>
<td>Not mounted</td>
</tr>
<tr>
<td>L1</td>
<td>15 µH</td>
<td>10 %</td>
<td>2.5 A</td>
<td></td>
<td>Power inductor</td>
<td>SMD 10x10mm body size</td>
<td>EPCOS</td>
<td>B82464A4 153K</td>
<td>Farnell: 7429649</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>220 µH</td>
<td>10 %</td>
<td>240 mA</td>
<td></td>
<td>Power inductor</td>
<td>SMD 6x6 mm body size</td>
<td>EPCOS</td>
<td>B82462A4 224K</td>
<td>RS: 495-8048</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>4.7 µH</td>
<td>20 %</td>
<td>2 A</td>
<td></td>
<td>Power inductor</td>
<td>SMD 6x6 mm body size</td>
<td>EPCOS</td>
<td>B82462G4 472M</td>
<td>Farnell: 7430000</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td>1 mH</td>
<td>10 %</td>
<td>120 mA</td>
<td></td>
<td>Inductor</td>
<td>SMD 2220</td>
<td>EPCOS</td>
<td>B82442H1 105K</td>
<td>RS: 496-1347</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td>BEAD</td>
<td>2A</td>
<td></td>
<td></td>
<td>High current (2 A) ferrite chip bead, impedance at 100 MHz: 600 ohm</td>
<td>SMD 0805</td>
<td>KEKITAGAWA</td>
<td>MLB-201209-0600PN</td>
<td>Distrelec: 330138</td>
<td></td>
</tr>
<tr>
<td>NTC1, NTC2</td>
<td>16 Ω</td>
<td>20 %</td>
<td>2.9 A</td>
<td>2.1 W</td>
<td>NTC resistor</td>
<td>Trough hole disc 5 mm lead spacing</td>
<td>EPCOS</td>
<td>B57236S0 160M000</td>
<td>Distrelec: 730576</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>2N7002</td>
<td></td>
<td>60 V/0.2 A</td>
<td></td>
<td>STripFET™ power MOSFET</td>
<td>SMD SOT23-3L</td>
<td>STMicroelectronics</td>
<td>2N7002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Part / value</td>
<td>Tolerance</td>
<td>Voltage</td>
<td>Watt</td>
<td>Technology information</td>
<td>Package-footprint</td>
<td>Manufacturer</td>
<td>RS/Distrelec/other code</td>
<td>More info</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------</td>
<td>------</td>
<td>-----------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>47 kΩ</td>
<td>1 %</td>
<td>0.1 W</td>
<td></td>
<td>Metal film resistor</td>
<td>SMD 0603</td>
<td>Any</td>
<td>Any</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2, R3, R5, R6</td>
<td>10 kΩ</td>
<td>1 %</td>
<td>1 W</td>
<td></td>
<td>Professional MELF resistors</td>
<td>SMD MMB 0207</td>
<td>Vishay</td>
<td>Distrelec: 710082</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>120 Ω</td>
<td>1 %</td>
<td>0.1 W</td>
<td></td>
<td>Metal film resistor</td>
<td>SMD 0603</td>
<td>Any</td>
<td>Any</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>10 kΩ</td>
<td>1 %</td>
<td>0.1 W</td>
<td></td>
<td>Metal film resistor</td>
<td>SMD 0603</td>
<td>Any</td>
<td>Any</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R8</td>
<td>39 kΩ</td>
<td>1 %</td>
<td>0.1 W</td>
<td></td>
<td>Metal film resistor</td>
<td>SMD 0603</td>
<td>Any</td>
<td>Any</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R9</td>
<td>330 Ω</td>
<td>1 %</td>
<td>0.1 W</td>
<td></td>
<td>Metal film resistor</td>
<td>SMD 0603</td>
<td>Any</td>
<td>Any</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R11, R18</td>
<td>47 kΩ</td>
<td>1 %</td>
<td>0.1 W</td>
<td></td>
<td>Metal film resistor</td>
<td>SMD 0603</td>
<td>Any</td>
<td>Any</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R12</td>
<td>1 kΩ</td>
<td>1 %</td>
<td>0.1 W</td>
<td></td>
<td>Metal film resistor</td>
<td>SMD 0603</td>
<td>Any</td>
<td>Any</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R13</td>
<td>5.1 kΩ</td>
<td>1 %</td>
<td>0.1 W</td>
<td></td>
<td>Metal film resistor</td>
<td>SMD 0603</td>
<td>Any</td>
<td>Any</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R14</td>
<td>24 kΩ</td>
<td>1 %</td>
<td>0.1 W</td>
<td></td>
<td>Metal film resistor</td>
<td>SMD 0603</td>
<td>Any</td>
<td>Any</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R17</td>
<td>150 Ω</td>
<td>1 %</td>
<td>0.1 W</td>
<td></td>
<td>Metal film resistor</td>
<td>SMD 0603</td>
<td>Any</td>
<td>Any</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Part / value</td>
<td>Tolerance</td>
<td>Voltage</td>
<td>Watt</td>
<td>Technology</td>
<td>Package-footprint</td>
<td>Manufacturer</td>
<td>Manufacturer code</td>
<td>RS/Distrelec/other code</td>
<td>More info</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------</td>
<td>------</td>
<td>------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>R10, R15, R19, R20, R21, R23, R24, R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35, R36, R37, R38, R39, R40, R41, R42, R43</td>
<td>4.7 kΩ</td>
<td>1 %</td>
<td>0.1 W</td>
<td>Metal film resistor</td>
<td>SMD 0603</td>
<td>Any</td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R22, R61</td>
<td>1 kΩ</td>
<td>1 %</td>
<td>0.1 W</td>
<td>Metal film resistor</td>
<td>SMD 0603</td>
<td>Any</td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R35, R37</td>
<td>6.8 MΩ</td>
<td>5 %</td>
<td>0.25 W</td>
<td>Metal film resistor</td>
<td>SMD 1206</td>
<td>Any</td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R36</td>
<td>2.5 kΩ</td>
<td>5 %</td>
<td>0.25 W</td>
<td>Metal film resistor</td>
<td>SMD 1206</td>
<td>Any</td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R38</td>
<td>33 kΩ</td>
<td>1 %</td>
<td>0.25 W</td>
<td>Metal film resistor</td>
<td>SMD 1206</td>
<td>Any</td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R39</td>
<td>10 Ω</td>
<td>5 %</td>
<td>0.25 W</td>
<td>Metal film resistor</td>
<td>SMD 1206</td>
<td>Any</td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R40</td>
<td>Not mounted</td>
<td></td>
<td>0.25 W</td>
<td>Metal film resistor</td>
<td>SMD 1206</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R41</td>
<td>10 kΩ</td>
<td>1 %</td>
<td>0.25 W</td>
<td>Metal film resistor</td>
<td>SMD 1206</td>
<td>Any</td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R42</td>
<td>75 kΩ</td>
<td>1 %</td>
<td>0.25 W</td>
<td>Metal film resistor</td>
<td>SMD 1206</td>
<td>Any</td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R43</td>
<td>15 Ω</td>
<td>1 %</td>
<td>0.25 W</td>
<td>Mini-MELF resistors</td>
<td>SMD 1206</td>
<td>Any</td>
<td>Vishay Distrelec:713030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Part / value</td>
<td>Tolerance %</td>
<td>Voltage current</td>
<td>Watt</td>
<td>Technology information</td>
<td>Package-footprint</td>
<td>Manufacturer</td>
<td>Manu factur er code</td>
<td>RS/Distrelec/other code</td>
<td>More info</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>------</td>
<td>------------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>R44</td>
<td>1.2 Ω</td>
<td>1 %</td>
<td>0.25 W</td>
<td>0.25 W</td>
<td>Mini-MELF resistors</td>
<td>SMD 1206</td>
<td>Any</td>
<td>Vishay</td>
<td>Distrelec: 713004</td>
<td></td>
</tr>
<tr>
<td>R45</td>
<td>8.2 kΩ</td>
<td>1 %</td>
<td>0.25 W</td>
<td>0.25 W</td>
<td>Metal film resistor</td>
<td>SMD 1206</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>R46</td>
<td>1.5 kΩ</td>
<td>5 %</td>
<td>0.25 W</td>
<td>0.25 W</td>
<td>Metal film resistor</td>
<td>SMD 1206</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>R47</td>
<td>330 Ω</td>
<td>5 %</td>
<td>0.25 W</td>
<td>0.25 W</td>
<td>Metal film resistor</td>
<td>SMD 1206</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>R48, R49, R50, R51, R53, R54, R55, R57, R75</td>
<td>10 kΩ</td>
<td>1 %</td>
<td>0.1 W</td>
<td>0.1 W</td>
<td>Metal film resistor</td>
<td>SMD 0603</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>R52</td>
<td>Not mounted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SMD 0603</td>
<td>Any</td>
<td>Not mounted</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>R56</td>
<td>1 MΩ</td>
<td>1 %</td>
<td>0.1 W</td>
<td>0.1 W</td>
<td>Metal film resistor</td>
<td>SMD 0603</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>R59, R60, R80, R81, R82, R83, R84, R85, R86, R87, R91</td>
<td>0</td>
<td>1 %</td>
<td>0.1 W</td>
<td>0.1 W</td>
<td>Metal film resistor</td>
<td>SMD 0603</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>R62, R63</td>
<td>0 - not fit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SMD 0603</td>
<td>Any</td>
<td>Not mounted</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>R64</td>
<td>5 Ω</td>
<td>1 %</td>
<td>0.1 W</td>
<td>0.1 W</td>
<td>Metal film resistor</td>
<td>SMD 0603</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>R65</td>
<td>47 Ω</td>
<td>1 %</td>
<td>0.1 W</td>
<td>0.1 W</td>
<td>Metal film resistor</td>
<td>SMD 0603</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>R66, R67</td>
<td>22 Ω</td>
<td>1 %</td>
<td>0.125 W</td>
<td>0.125 W</td>
<td>Metal film resistor</td>
<td>SMD 0805</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>R68</td>
<td>1 MΩ</td>
<td>5 %</td>
<td>0.125 W</td>
<td>0.125 W</td>
<td>Metal film resistor</td>
<td>SMD 0805</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Part / value</td>
<td>Tolerance %</td>
<td>Voltage current</td>
<td>Watt</td>
<td>Technology information</td>
<td>Package-footprint</td>
<td>Manufacturer</td>
<td>Manufacturer code</td>
<td>RS/Distrelec/other code</td>
<td>More info</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>------</td>
<td>------------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>R69</td>
<td>1.5 kΩ</td>
<td>5 %</td>
<td></td>
<td>0.125 W</td>
<td>Metal film resistor</td>
<td>SMD 0805</td>
<td>Any</td>
<td></td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>R70</td>
<td>100 Ω</td>
<td>1 %</td>
<td></td>
<td>0.1 W</td>
<td>Metal film resistor</td>
<td>SMD 0603</td>
<td>Any</td>
<td></td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>R76, R77, R78</td>
<td>300 Ω</td>
<td>5 %</td>
<td></td>
<td>0.125 W</td>
<td>Metal film resistor</td>
<td>SMD 0805</td>
<td>Any</td>
<td></td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>R79</td>
<td>47 Ω</td>
<td>1 %</td>
<td></td>
<td>0.1 W</td>
<td>Metal film resistor</td>
<td>SMD 0603</td>
<td>Any</td>
<td></td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>RV1</td>
<td>S14K510</td>
<td>10 %</td>
<td>510 Vac</td>
<td></td>
<td>Disk-shaped metal-oxide varistor</td>
<td>Through hole</td>
<td>EPCOS</td>
<td>B72214S0 511K101</td>
<td>Distrelec: 730933</td>
<td></td>
</tr>
<tr>
<td>SW1, SW4, S1</td>
<td>ST7580 reset</td>
<td></td>
<td></td>
<td></td>
<td>Tactile switch 100 gF</td>
<td>Through hole 6X6 mm 5 mm height</td>
<td>Any</td>
<td></td>
<td>RS:378-6410</td>
<td></td>
</tr>
<tr>
<td>SW3</td>
<td>E0</td>
<td></td>
<td></td>
<td></td>
<td>3-way stripline connector</td>
<td>Through hole 2.54 mm pitch</td>
<td>Any</td>
<td></td>
<td>RS: 251-8092</td>
<td></td>
</tr>
<tr>
<td>SW5</td>
<td>E1</td>
<td></td>
<td></td>
<td></td>
<td>3-way stripline connector</td>
<td>Through hole 2.54 mm pitch</td>
<td>Any</td>
<td></td>
<td>RS: 251-8092</td>
<td></td>
</tr>
<tr>
<td>SW6</td>
<td>E2</td>
<td></td>
<td></td>
<td></td>
<td>3-way stripline connector</td>
<td>Through hole 2.54 mm pitch</td>
<td>Any</td>
<td></td>
<td>RS: 251-8092</td>
<td></td>
</tr>
<tr>
<td>SW7</td>
<td>BOOT0</td>
<td></td>
<td></td>
<td></td>
<td>3-way stripline connector</td>
<td>Through hole 2.54mm pitch</td>
<td>Any</td>
<td></td>
<td>RS: 251-8092</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Part / value</td>
<td>Tolerance</td>
<td>Voltage current</td>
<td>Watt</td>
<td>Technology information</td>
<td>Package-footprint</td>
<td>Manufacturer</td>
<td>Manufacturer code</td>
<td>RS/Distrelec/other code</td>
<td>More info</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>-----------</td>
<td>----------------</td>
<td>------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>SW9</td>
<td>BOOT1</td>
<td></td>
<td></td>
<td></td>
<td>3-way stripline connector</td>
<td>Through hole 2.54 mm pitch</td>
<td>Any</td>
<td></td>
<td>RS: 251-8092</td>
<td></td>
</tr>
<tr>
<td>SW10, SW12, SW16, SW17, SW18</td>
<td>Switch</td>
<td></td>
<td></td>
<td></td>
<td>3-way stripline connector</td>
<td>Through hole 2.54 mm pitch</td>
<td>Any</td>
<td></td>
<td>RS: 251-8092</td>
<td></td>
</tr>
<tr>
<td>SW11, SW13, SW14, SW15, SW19, SW20, SW21, SW22, SW23</td>
<td>Jumper</td>
<td></td>
<td></td>
<td></td>
<td>3-way stripline connector</td>
<td>Through hole 2.54 mm pitch</td>
<td>Any</td>
<td></td>
<td>RS: 251-8092</td>
<td></td>
</tr>
<tr>
<td>TP1</td>
<td>CL</td>
<td></td>
<td></td>
<td></td>
<td>Loop terminal assembly, 1 mm hole</td>
<td>Through hole</td>
<td></td>
<td>RS: 101-2391</td>
<td>Test point</td>
<td></td>
</tr>
<tr>
<td>TP2</td>
<td>ZC_IN</td>
<td></td>
<td></td>
<td></td>
<td>Loop terminal assembly, 1 mm hole</td>
<td>Through hole</td>
<td></td>
<td>RS: 101-2391</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP3</td>
<td>PA_IN-</td>
<td></td>
<td></td>
<td></td>
<td>Loop terminal assembly, 1 mm hole</td>
<td>Through hole</td>
<td></td>
<td>RS: 101-2391</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP4</td>
<td>PA_IN+</td>
<td></td>
<td></td>
<td></td>
<td>Loop terminal assembly, 1 mm hole</td>
<td>Through hole</td>
<td></td>
<td>RS: 101-2391</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP5</td>
<td>TX_OUT</td>
<td></td>
<td></td>
<td></td>
<td>Loop terminal assembly, 1 mm hole</td>
<td>Through hole</td>
<td></td>
<td>RS: 101-2391</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP6</td>
<td>PA_OUT</td>
<td></td>
<td></td>
<td></td>
<td>Loop terminal assembly, 1 mm hole</td>
<td>Through hole</td>
<td></td>
<td>RS: 101-2391</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Part / value</td>
<td>Tolerance %</td>
<td>Voltage current</td>
<td>Watt</td>
<td>Technology information</td>
<td>Package-footprint</td>
<td>Manufacturer</td>
<td>Manufacturer code</td>
<td>RS/Distrelec/other code</td>
<td>More info</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>TP7</td>
<td>VDDIO</td>
<td></td>
<td></td>
<td></td>
<td>Loop terminal assembly, 1 mm hole</td>
<td>Through hole</td>
<td></td>
<td></td>
<td>RS: 101-2391</td>
<td></td>
</tr>
<tr>
<td>TP8</td>
<td>VDD</td>
<td></td>
<td></td>
<td></td>
<td>Loop terminal assembly, 1 mm hole</td>
<td>Through hole</td>
<td></td>
<td></td>
<td>RS: 101-2391</td>
<td></td>
</tr>
<tr>
<td>TP9</td>
<td>VDD_PLL</td>
<td></td>
<td></td>
<td></td>
<td>Loop terminal assembly, 1 mm hole</td>
<td>Through hole</td>
<td></td>
<td></td>
<td>RS: 101-2391</td>
<td></td>
</tr>
<tr>
<td>TP10</td>
<td>VCC</td>
<td></td>
<td></td>
<td></td>
<td>Loop terminal assembly, 1 mm hole</td>
<td>Through hole</td>
<td></td>
<td></td>
<td>RS: 101-2391</td>
<td></td>
</tr>
<tr>
<td>TP11</td>
<td>VCCA</td>
<td></td>
<td></td>
<td></td>
<td>Loop terminal assembly, 1 mm hole</td>
<td>Through hole</td>
<td></td>
<td></td>
<td>RS: 101-2391</td>
<td></td>
</tr>
<tr>
<td>TP12</td>
<td>RX_IN</td>
<td></td>
<td></td>
<td></td>
<td>Loop terminal assembly, 1 mm hole</td>
<td>Through hole</td>
<td></td>
<td></td>
<td>RS: 101-2391</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>VAC 5024X044</td>
<td></td>
<td></td>
<td></td>
<td>Signal-transformer</td>
<td>SMD VAC VACUUMSCHMEL ZE T60403-K5024-X044</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>TDK - REV.C</td>
<td>6 W</td>
<td></td>
<td></td>
<td>General transformers</td>
<td>Through hole</td>
<td>TDK</td>
<td>SRW16ES</td>
<td>ST supply</td>
<td></td>
</tr>
<tr>
<td>U1</td>
<td>ST7580</td>
<td></td>
<td></td>
<td></td>
<td>FSK, N-PSK multi-mode power line networking system-on-chip</td>
<td>SMD QFN-48 STMicroelectronics</td>
<td>ST7580</td>
<td></td>
<td>ST supply</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Part / value</td>
<td>Tolerance</td>
<td>Voltage current</td>
<td>Watt</td>
<td>Technology information</td>
<td>Package-footprint</td>
<td>Manufacturer</td>
<td>Manufacturer code</td>
<td>RS/Distrelec/other code</td>
<td>More info</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>------</td>
<td>--</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>U3</td>
<td>LF33AB</td>
<td>3.3 V</td>
<td></td>
<td></td>
<td>Very low drop voltage regulators with inhibit</td>
<td>SMD DPAK</td>
<td>STMicroelectronics</td>
<td>LF33ABDT-TR</td>
<td>ST supply</td>
<td></td>
</tr>
<tr>
<td>U4</td>
<td>Altair04-900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ST supply</td>
<td></td>
</tr>
<tr>
<td>U5</td>
<td>STM32F103 VET6</td>
<td></td>
<td></td>
<td></td>
<td>32-bit MCU</td>
<td>SMD LQFP100</td>
<td>STMicroelectronics</td>
<td>STM32F10 3VET6</td>
<td>ST supply</td>
<td></td>
</tr>
<tr>
<td>U6</td>
<td>M24128-BWMN6P</td>
<td></td>
<td></td>
<td></td>
<td>128-Kbit, 64-Kbit and 32-Kbit serial I²C bus EEPROM</td>
<td>SMD SO8</td>
<td>STMicroelectronics</td>
<td>M24128-BWMN6TP</td>
<td>ST supply</td>
<td></td>
</tr>
<tr>
<td>U7</td>
<td>USBLC6-2P6</td>
<td>- not fit</td>
<td></td>
<td></td>
<td>Very low capacitance ESD protection</td>
<td>SMD SOT-666</td>
<td>STMicroelectronics</td>
<td>USBLC6-2P6</td>
<td>ST supply</td>
<td></td>
</tr>
<tr>
<td>U8</td>
<td>MT008-A</td>
<td></td>
<td></td>
<td></td>
<td>Joystick</td>
<td></td>
<td></td>
<td></td>
<td>ST supply</td>
<td></td>
</tr>
<tr>
<td>U9</td>
<td>TSM0505S</td>
<td>10 %</td>
<td>5 V/5 V 200 mA</td>
<td></td>
<td>DC/DC converter</td>
<td>SMD SOIC-14</td>
<td></td>
<td></td>
<td>RS: 510-5431</td>
<td></td>
</tr>
<tr>
<td>U10</td>
<td>IL712S-1E</td>
<td>2500 Vrms</td>
<td></td>
<td></td>
<td>Bi-directional digi isolator</td>
<td>SMD MSOP-8</td>
<td>NVE</td>
<td>IL712S-1E</td>
<td>RS: 418-436</td>
<td></td>
</tr>
</tbody>
</table>
Table 7. BOM (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Part / value</th>
<th>Tolerance %</th>
<th>Voltage current</th>
<th>Watt</th>
<th>Technology information</th>
<th>Package-footprint</th>
<th>Manufacturer</th>
<th>Manufacturer code</th>
<th>RS/Distrelec/other code</th>
<th>More info</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>Battery holder</td>
<td></td>
<td></td>
<td></td>
<td>PCB mount coin cell holder, 12 mm</td>
<td>Through hole</td>
<td>Keystone</td>
<td>500</td>
<td>RS: 430-653</td>
<td>CR1220 lithium coin cell (RS: 597-172)</td>
</tr>
<tr>
<td>Y1, Y3</td>
<td>8 MHz 30 ppm</td>
<td></td>
<td></td>
<td></td>
<td>8 MHz crystal</td>
<td>Through hole</td>
<td>Any</td>
<td>RS: 672-0268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y2</td>
<td>32.768 kHz 20 ppm</td>
<td></td>
<td></td>
<td></td>
<td>32.768 kHz crystal</td>
<td>Through hole HC49S</td>
<td>Any</td>
<td>RS: 547-6979</td>
<td>Mount this crystal in horizontal position</td>
<td></td>
</tr>
<tr>
<td>ISO1</td>
<td>TLP 421</td>
<td></td>
<td></td>
<td></td>
<td>Optocoupler</td>
<td>Through hole DIP4</td>
<td>TOSHIBA</td>
<td>TLP 421</td>
<td>Distrelec: 631515</td>
<td></td>
</tr>
<tr>
<td>Spacer</td>
<td>5 mm metal spacer with inner and outer threads</td>
<td>Through hole</td>
<td>Any</td>
<td>Distrelec: 341130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spacer</td>
<td>35 mm metal spacer with RH and LH internal threads</td>
<td>Through hole</td>
<td>Any</td>
<td>Distrelec: 341077</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washers</td>
<td>Washer M3</td>
<td></td>
<td></td>
<td></td>
<td>Any</td>
<td></td>
<td>RS: 189-620</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuts</td>
<td>Nut M3</td>
<td></td>
<td></td>
<td></td>
<td>Any</td>
<td></td>
<td>RS: 483-0502</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5 Schematics

Figure 8. Top
Figure 9. Metrology board connector

Figure 10. User interface
Figure 11. LCD connector section

LCD_CS
LCD_CLK
LCD_DI
LCD_RS
LCD_WR

LCD_DO
RESET#

LCD_COLOR DISPLAY CONNECTORS

VDD
GND
Figure 12. MCU schematic
Figure 13. RTC calibration, meter and LCD level
Figure 14. MEMS module connector

Figure 15. General purpose configuration jumpers
Figure 17. System JTAG connector, ST7580UART interface, and 8051 program flash memory.
Figure 18. Non-isolated zero-crossing, ST7580 reset button, current limit setting, and microcontroller connection

Non-Isolated Zero Crossing

Current Limit Setting

Microcontroller Connection
Figure 20. Power supply (part 2)
Figure 21. Power supply (part 3)

Figure 22. ZigBee module connector
Figure 23. USB connector
6 References

- STM32F103VE datasheet
- RM0008 reference manual
- STM32F10xFWLib 3.0.0 help file
- FreeRTOS official web-site www.freertos.org
- UM0997 user manual
- STPMC1 datasheet
- UM0746 user manual
- ST7580 data brief
7 Revision history

Table 8. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-Jan-2011</td>
<td>1</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS “AUTOMOTIVE GRADE” MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

50/50 Doc ID 17942 Rev 1