Clocking Options for Stellaris® Family
Microcontrollers

Application Note

Texas Instruments
Copyright

Copyright © 2006–2009 Texas Instruments, Inc. All rights reserved. Stellaris and StellarisWare are registered trademarks of Texas Instruments. ARM and Thumb are registered trademarks, and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.

Texas Instruments
108 Wild Basin, Suite 350
Austin, TX 78746
Main: +1-512-279-8800
Fax: +1-512-279-8879
http://www.luminarymicro.com
Table of Contents

Introduction ... 4
Stellaris Clock Tree... 4
Oscillator Sources... 4
 Crystal... 4
 Single-Ended Clock ... 5
 Internal Oscillator.. 5
Using the PLL ... 6
Conclusion .. 7
References ... 8
Important Notice ... 9
Introduction

This application note discusses the clocking options available on the Stellaris family microcontrollers, including use and configuration of the Phase Locked Loop (PLL).

Stellaris Clock Tree

The two clock sources for the Stellaris microcontrollers are the main oscillator and the internal oscillator. Both sources have the ability to drive the system clock, however, the device cannot boot from the internal oscillator. With the oscillator source selected (see Figure 1), the remainder of the system clocking tree is configured by choosing the appropriate clock dividers (SYSDIV and PWMDIV).

Figure 1. Clock Tree

Application software chooses whether to use the PLL based on the value of the BYPASS signal. When the PLL is in use, it always outputs a 200-MHz clock signal, and when combined with the system divider (SYSDIV), generates the system clock.

The clock that is fed into the PWM module is derived from the system clock. In applications requiring a slower PWM clock, the PWM divider (PWMDIV) can be applied to the clock signal before it reaches the PWM module.

The ADC clock uses a constant divider that assumes a 200-MHz source, meaning that for the ADC clock to meet the required operating range of 14–18 MHz, the PLL must be enabled and used.

Oscillator Sources

The main oscillator allows either a crystal or single-ended input clock signal. Cost-sensitive applications typically use an external crystal with the on-chip oscillator circuit since it is the most cost-effective solution. It is also possible to use the internal oscillator to clock the device after the boot process has completed.

Crystal

A crystal is used with the internal oscillator circuit by connecting the crystal to the OSC1 and OSC2 pins of the Stellaris device (along with two capacitors) as shown in Figure 2 on page 5. The values of C1 and C2 are 15 pF for all crystals specified to work with the PLL (3.579545–8.192 MHz).
Single-Ended Clock
The second option for driving the main oscillator is using a single-ended clock source, such as a crystal oscillator, or even a function generator (for debug purposes). Using such a clock source does not require the on-chip oscillator circuit, and therefore does not require the OSC2 pin (see Figure 3 on page 6). The OSC2 pin is left floating in this configuration.

When using a single-ended clock source with the PLL, one of the supported crystal frequencies must be used (see Table 1 on page 6).

Internal Oscillator
It is also possible to use the internal oscillator (or the internal oscillator divided by four) to clock the device once the boot process has completed. The oscillator source is changed by modifying the OSCSRC field of the RCC register in the System Control module.

A major hindrance to using the internal oscillator is that its accuracy is only guaranteed to be within ±50% of its ideal operating frequency of 15 MHz. Having such a large variance between devices practically eliminates the usefulness of the internal oscillator as a clock source in a real-world application. The primary use for the internal oscillator is for performing an internal clock check on the main oscillator source.
Using the PLL

The PLL requires specific input clock frequencies in order to run at the desired 200 MHz. Crystals or single-ended sources ranging in frequency from 3.579545–8.192 MHz are supported. See Table 1 for the full list of supported crystal frequencies.

Table 1. Supported Crystal Frequencies

<table>
<thead>
<tr>
<th>Crystal Frequency (MHz)</th>
<th>PLL Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.579545 MHz</td>
<td>5.12 MHz</td>
</tr>
<tr>
<td>3.6864 MHz</td>
<td>6 MHz (reset value)</td>
</tr>
<tr>
<td>4 MHz</td>
<td>6.144 MHz</td>
</tr>
<tr>
<td>4.096 MHz</td>
<td>7.3728 MHz</td>
</tr>
<tr>
<td>4.9152 MHz</td>
<td>8 MHz</td>
</tr>
<tr>
<td>5 MHz</td>
<td>8.192 MHz</td>
</tr>
</tbody>
</table>

When a crystal or single-ended source with a supported frequency is used, the Stellaris device uses an internal look-up table to populate the PLL parameters in the XTAL to PLL Translation (PLLCFG) register. Using unsupported frequencies with the PLL can create faulty operation of the ADC module (if present).
Example 1. Configuring the PLL with the Driver Library
This example shows how to configure the PLL using the StellarisWare® Peripheral Driver Library functions. The Driver Library is a software bundle of example drivers provided free by Texas Instruments. To download the software, visit the www.luminarymicro.com website.

Configuring the PLL with the Driver Library is simple; it only requires a call to the `SysCtlClockSet` function. To configure the PLL to use a 6-MHz crystal and to run at a 20-MHz system clock, the function call is as shown in Code Segment 1.a.

Code Segment 1.a. Configure PLL with `SysCtlClockSet`
```c
SysCtlClockSet(SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_6MHZ);
```

The configuration parameters passed to the function are modifiable to fit the needs of the application. Typically, the only parameter that might change is the system divider since the oscillator frequency is usually fixed. The PLL is bypassed by changing the `SYSCTL_USE_PLL` parameter to `SYSCTL_USE_OSC`.

Example 2. Configuring the PLL with Direct Register Writes
When the Driver Library functions are not used, the PLL is configured using direct register writes to the **Run-Mode Clock Configuration (RCC)** register. The steps required to successfully change the PLL-based system clock are:

1. Bypass the PLL and system clock divider by setting the **BYPASS** bit and clearing the **USESYS** bit in the **RCC** register. This configures the system to run off a “raw” clock source (using the main oscillator or internal oscillator) and allows for the new PLL configuration to be validated before switching the system clock to the PLL.

2. Select the crystal value (**XTAL**) and oscillator source (**OSCSRC**), and clear the **PWRDN** and **OE** bits in **RCC**. Setting the **XTAL** field automatically pulls valid PLL configuration data for the appropriate crystal, and clearing the **PWRDN** and **OE** bits powers and enables the PLL and its output.

3. Select the desired system divider (**SYSDIV**) and set the **USESYS** bit in **RCC**. The **SYSDIV** field determines the system frequency for the microcontroller.

4. Wait for the PLL to lock by polling the **PLLLRIS** bit in the **Raw Interrupt Status (RIS)** register. If the PLL doesn’t lock, the configuration is invalid.

5. Enable use of the PLL by clearing the **BYPASS** bit in **RCC**.

Important: If the **BYPASS** bit is cleared before the PLL locks, it is possible to render the device unusable.

Conclusion
Stellaris microcontrollers must use an external oscillator source to boot, but can be configured to use the internal oscillator to clock the device if needed. For most applications, an inexpensive crystal is all that is required to clock the device, and the wide range of supported crystal frequencies allows flexibility in choosing an oscillator to use with the PLL.
References

The following documents are available for download at www.luminarymicro.com:

- Stellaris microcontroller data sheet, Publication Number DS-LM3Snnn (where nnn is the part number for that specific Stellaris family device)
- StellarisWare® Driver Library
- StellarisWare® Driver Library User’s Manual, publication number SW-DRL-UG
Important Notice

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

- Amplifiers: amplifier.ti.com
- Data Converters: dataconverter.ti.com
- DLP® Products: www.dlp.com
- DSP: dsp.ti.com
- Clocks and Timers: www.ti.com/clocks
- Interface: interface.ti.com
- Logic: logic.ti.com
- Power Mgmt: power.ti.com
- Microcontrollers: microcontroller.ti.com
- RFID: www.ti-rfid.com
- RF/IF and ZigBee® Solutions: www.ti.com/prf

Applications

- Audio: www.ti.com/audio
- Automotive: www.ti.com/automotive
- Broadband: www.ti.com/broadband
- Digital Control: www.ti.com/digitalcontrol
- Medical: www.ti.com/medical
- Military: www.ti.com/military
- Optical Networking: www.ti.com/opticalnetwork
- Security: www.ti.com/security
- Telephony: www.ti.com/telephony
- Video & Imaging: www.ti.com/video
- Wireless: www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated