ABSTRACT

Once the bottom circuit board has been designed, the assembly guidelines for package-on-package (PoP) versions of the OMAP35xx processor and the memory device must be considered.

PoP packages have an enormous number of variables associated with assembly. The following factors have a major effect on the quality and reliability of final assembly: the circuit board design, the solder paste characteristics, solder paste deposition, the reflow profile, and the fluxing or solder paste deposition onto the PoP memory prior to assembly.

There are two major techniques for mounting the PoP memory: one pass and two pass. Although both are discussed, the one pass process is recommended as it is the most economical and provides about the same assembly yields as the two pass.

The BeagleBoard, discussed in the companion article to this document, PCB Design Guidelines for 0.4mm Package-On-Package (PoP) Packages (SPRAAV1) - which will be referred to as Part I throughout the reminder of this document - forms the basis for the understanding of 0.4mm assembly guidelines and process parameters. This application report describes only one of many processes. Your assembly facility will likely have others; it cannot cover all of the possible variations. It is strongly recommended that you perform your own trial runs and studies in conjunction with your assembly house to optimize the PoP assembly process.

Figure 1. OMAP35xx Processor (bottom device) And PoP Memory (top device) Stack Up On PCB

Contents

1 Introduction .. 2
2 A Word Of Caution .. 3
3 A Team Sport ... 4
4 BeagleBoard Schematics and Gerbers Available ... 5
5 Assembly Options ... 6
6 Solder Paste Stencil Design .. 7
7 BeagleBoard Solder Stencil ... 9
8 Memory Attachment Options ... 9
9 Solder Paste ... 9
10 Screen Printing .. 10
11 Reflow Atmosphere ... 11
12 Reflow ... 12
13 Thermal Warpage... 13
14 Troubleshooting.. 13
15 Acknowledgments... 15
16 References... 15

List of Figures
1 OMAP35xx Processor (bottom device) And PoP Memory (top device) Stack Up On PCB ... 1
2 Part 2 - OMAP35xx PoP Assembly Guidelines.................. 3
3 Close-up Of The OMAP35xx Processor And PoP Memory Stack Up .. 3
4 PoP Assembly Teamwork .. 5
5 beagleboard.org ... 5
6 BeagleBoard Top Side View .. 6
7 Assembly Options - 1 Pass ... 7
8 Assembly Options - 2 Pass ... 7
9 DEK 248 Screen Printer .. 10
10 DEK 248 Optical Inspection Station 10
11 Differences Between Reflow in Nitrogen (left image) and Air (right image) With SnAgCu Solder .. 11
12 CircuitCo Reflow Profile ... 12
13 Fishbone Diagram of Major Causes of Stress on BGA Packages and Solder Joints.... 14
14 Fishbone Diagram Highlighting Various Causes and Effects Surrounding Assembly Yield.. 14
15 Cutaway View Of OMAP35xx Processor And PoP Memory .. 15

List of Tables
1 .. 8

1 Introduction

This application report is the second of two parts. Part I covers the main PCB design guidelines. The design of the bottom board to which the OMAP35xx processor is mounted dominates the PoP failure mechanisms. Be sure to read and apply the guidelines in Part I before beginning PoP assembly.

This document, Part II, covers the guidelines for the assembly of printed circuit boards that use the PoP package. Included are assembly options as well as suggestions to use when qualifying and working with your assembly sites, either internal or contract.
2 A Word Of Caution

This section discusses the assembly of the OMAP35xx BGA package with its companion memory mounted on top, hence, the package-on-package name. These guidelines do not cover all aspects of automated assembly nor is this a study of the reliability of the PoP package.

Assembly of PoP devices and circuit boards for fine-pitch BGA packages at 0.4mm and smaller is still very new for most assembly shops. It is more of an art than a science. Therefore, the material in this document will age and go out of date quickly.
A Team Sport

Since this is a rapidly evolving technology, spend some time reading the huge number of articles, papers, and company presentations on all aspects of fine-pitch board design. Spend a lot of time with your assembly house. Find out what they know, what experience they have and their documentation of fine pitch package assembly. Time spent pre-planning and discussing is time well spent.

A common theme emerged as this application report was developed and after an extensive literature search was conducted. Fine pitch BGA assembly, especially PoP assembly, is considered a differentiator among assembly houses. Also, several assembly shops indicated they could or would not handle the fine pitch packages and many did not have the appropriate equipment.

If your assembly house has never done PoP, be prepared to allow time for several learning cycles before committing to volume production. The use of the BeagleBoard gerbers will be a big help. Use it to help your assembly shop work through the issues of bringing up a new process. Based on your findings, you’ll discover that your suppliers can handle the device or that you must locate a more experienced assembly shop with better equipment.

Assembly success comes from experienced companies willing to work together. The most common pairing is an assembly shop and a PCB board fabricator. Such companies openly share ideas and provide feedback to all parties involved in board design, fabrication and assembly.

TI has explored several companies that have worked together and found many common points of agreement on assembly guidelines as well a few minor points of disagreement. The suggestions and recommendations, plus some precautions originated with these companies. Always take advantage of any recommended changes from a vendor’s DFM studies and don’t be afraid to change a board layout to fit the suggestions of the assembly house.

As a final word of advice, have lots of patience.

3 A Team Sport

Successful design and assembly of complex, fine-pitch circuit boards is a Team Sport. The days of tossing circuit diagrams over the cubical wall to the board designer who then tosses them to the circuit board fabrication shop are gone. Today’s board design requires a team approach and the entire process, from component selection to assembly requires careful coordination.

The typical team is composed of four different members representing the four major steps in product fabrication: the device supplier (chips, passives, mechanical), the PCB designer, the PCB fabrication shop, and the PCB assembly shop. There may be more members or some members may do more than one job.

Each of the team members brings their own experiences and design guidelines to bear on the task. As a result, it is not uncommon to find conflicting guidelines. These conflicts must be resolved prior to the start of work. Unresolved conflicts will result in poor assembly yields at best or 100% failure at worst. Constant and frequent communication is the key to resolving conflicts and everyone must be in the loop.

Get to know your team members and be sure to have frequent meetings as the project proceeds from design through production. It will be money and time well spent.
BeagleBoard Schematics and Gerbers Available

The BeagleBoard is an open-source hardware platform based on the Texas Instruments' OMAP35xx. The platform is a complete single-board computer suitable for software development and debug. Use the following link for additional information, including the hardware schematics and gerber files: http://beagleboard.org. Also consider subscribing to the BeagleBoard RSS feed.

The BeagleBoard was used to validate the assembly guidelines discussed in this application report.

Figure 4. PoP Assembly Teamwork

Figure 5. beagleboard.org
5 Assembly Options

There are two options to consider when deciding to build PoP assemblies: a one pass option and a two pass option.

In a one-pass assembly the OMAP35xx processor is first mounted to the board, the memory is mounted to the processor and the finished board is then run through the reflow oven in a single pass. TI uses this process with several assembly shops; none have reported any issues and the yields have been good.
The two-pass assembly has an intermediate step in which the memory is first mounted onto the OMAP45xx processor. Then, these two parts are placed in a carrier tray and reflowed. These joined devices are then mounted on the circuit board and the finished board is reflowed a second time.

6 Solder Paste Stencil Design

Stencil design has several critical factors that affect solder paste deposition. For this discussion, the recommendations apply only to round, solder-mask-defined pads for fine-pitch BGA packages with 0.4mm spacing. These recommendations can be considered as a starting point for building design rules that fit your manufacturing requirements and capabilities, assuming a lead-free process is used. In all cases, you must carefully monitor assembly startup so as to insure the desired results are being achieved.
6.1 Area Ratio

The relationship between the surface of the aperture and the inside surface of the aperture walls in the stencil is referred to as the area ratio (AR). The area ratio is much more suitable for shapes such as circles than the aspect ratio. For fine pitch BGA pads, a round aperture is recommended.

The area ratio of ≥ 0.66 aperture opening to the stencil wall has been shown to provide the best transfer efficiency and repeatability of the deposited paste. Values from 0.66 to 0.8 insure a good paste release from the stencil.

The biggest impact on area ratio is the stencil thickness. The equation is:

\[AR = \frac{Ap}{Aw} \geq 0.66 \]

Where Ap is the aperture opening area and Aw is the wall area

\[0.66 \geq \frac{\pi r^2}{2\pi r} \]

Where r is the aperture opening radius and T is the stencil thickness. Table 1 shows the various values of AR for different aperture openings and stencil thicknesses.

| Table 1. |
|---|---|---|---|---|
| Aperture Opening (mils) | Aperture Radius (mils) | Stencil Thickness (\(\mu m\)) | Stencil Thickness (mils) | AR |
| 100 \(\mu m\) Stencil | 10 | 5 | 100 | 3.94 | 0.64 |
| | 11 | 5.5 | 100 | 3.94 | 0.70 |
| | 12 | 6 | 100 | 3.94 | 0.76 |
| | 13 | 6.5 | 100 | 3.94 | 0.83 |
| | 14 | 7 | 100 | 3.94 | 0.89 |
| | 15 | 7.5 | 100 | 3.94 | 0.95 |
| | 16 | 8 | 100 | 3.94 | 1.02 |
| 125 \(\mu m\) Stencil | 10 | 5 | 125 | 4.92 | 0.51 |
| | 11 | 5.5 | 125 | 4.92 | 0.56 |
| | 12 | 6 | 125 | 4.92 | 0.61 |
| | 13 | 6.5 | 125 | 4.92 | 0.66 |
| | 14 | 7 | 125 | 4.92 | 0.71 |
| | 15 | 7.5 | 125 | 4.92 | 0.76 |
| | 16 | 8 | 125 | 4.92 | 0.81 |
| 5 mil Stencil | 10 | 5 | 127 | 5 | 0.50 |
| | 11 | 5.5 | 127 | 5 | 0.55 |
| | 12 | 6 | 127 | 5 | 0.60 |
| | 13 | 6.5 | 127 | 5 | 0.65 |
| | 14 | 7 | 127 | 5 | 0.70 |
| | 15 | 7.5 | 127 | 5 | 0.75 |
| | 16 | 8 | 127 | 5 | 0.80 |
| 6 mil Stencil | 10 | 5 | 152.4 | 6 | 0.42 |
| | 11 | 5.5 | 152.4 | 6 | 0.46 |
| | 12 | 6 | 152.4 | 6 | 0.50 |
| | 13 | 6.5 | 152.4 | 6 | 0.54 |
| | 14 | 7 | 152.4 | 6 | 0.58 |
| | 15 | 7.5 | 152.4 | 6 | 0.63 |
| | 16 | 8 | 152.4 | 6 | 0.67 |
6.2 Aperture Size and Overprinting

Some assembly houses specify a slightly larger than normal opening to overprint the paste. However, for the BeagleBoard, there is no overprinting since the pads are soldermask defined.

6.3 Stencil Aperture Shape

A round aperture shape is recommended for BGA pads. This allows for an equal, uniform amount of pasted deposition on the round pad. Square corners can result in unequal amounts of paste being deposited and should be avoided.

6.4 Stencil Material and Finishing

The solder stencil should be made from stainless steel, chromium or Cobalt Nickel. The apertures should be laser cut. The finish should be electro-polished to provide mirror smooth walls. The mirror smooth aperture walls insure good paste release.

During assembly, the wider side of the aperture should be against the circuit board.

7 BeagleBoard Solder Stencil

For the BeagleBoard, the solder stencil has the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>Thickness</td>
<td>4mils</td>
</tr>
<tr>
<td>Fabrication</td>
<td>Laser Cut</td>
</tr>
<tr>
<td>Aperture Shape</td>
<td>Round</td>
</tr>
<tr>
<td>Aperture Dimension</td>
<td>10mils (254um)</td>
</tr>
</tbody>
</table>

8 Memory Attachment Options

Memory attachment to the top of the processor is often considered one of the critical and most troublesome tasks in PoP assembly. Fortunately, this has proven to be untrue. In fact, memory mounting has proven to be the least troublesome task.

The primary concern is creating a strong solder joint between the memory ball and the processor pad. Simple screening of paste cannot be used because the die is in the way. The two processes to be described have been developed and used in volume production: paste deposition and flux dipping. For very high volume production, the flux dipping is preferred due to its simplicity and speed. A third option is solder paste dipping which has emerged as an alternative.

For the relatively low volume BeagleBoard, a brushed on tacky paste flux was used. This material, called LF4300 Tacky Solder Flux from Amtech™, has the consistency of a gel and is simply brushed onto the OMAP35xx memory pads. The BeagleBoard OMAP35xx to memory attachment yield was excellent.

9 Solder Paste

The most critical issue related to mounting the OMAP35xx processor to the circuit board is the proper fluxing of the attachment surfaces and the creation of proper metallurgical bonds during the SMT reflow process.

Solder paste characteristics that are important from a process perspective include the solder powder particle size, metallurgy, slump, temperature and humidity sensitivity, solder content, type of flux residue, viscosity, and the propensity for solder balling. No-clean eutectic solder pastes with high-metal content are used widely in mobile terminal PCB assembly.
The choice of the particle size used in the solder powder for area array is dependent on the device pitch. As the device pitch decreases, the aperture size will shrink and a smaller particle size solder paste may be required.

For the BeagleBoard, AMTECH LF4300 paste was used to attach the OMAP35xx to the circuit board. It offers excellent reflow and profiling capabilities, plus it is a no clean paste that is water soluble and it is lead free. It is also composed of the same alloy as the LF4300 Tacky Solder Flux so they share the same reflow profile.

10 **Screen Printing**

The screen printing process plays a key role in the overall assembly yield equation. The key parameters that were used for the high yielding BeagleBoard are described and can be used as a starting point for your screen printing process. Knowing the appropriate parameters allows for the solder paste to be applied in a controlled manner to prevent inconsistencies and defects.

![Figure 9. DEK 248 Screen Printer](image)

In the solder paste printing process, the printer is crucial for achieving desired print quality. Screen printers available today fall into two main categories: laboratory and production. Each category has further subdivisions because companies expect different performance levels from laboratory and production printers. For example, a laboratory application that is R&D for one company could be prototype or production for another. Moreover, production requirements can vary widely depending on volume. Because a clear-cut equipment classification is not possible, the best thing to do is discuss your volume requirements with your assembly shop and be sure they offer machines to match the desired application.

Critical parameters for high-quality solder paste printing include print speed, print pressure, separation speed/distance (or the speed/distance at which the PCB and the stencil are separated), and printer alignment. It goes without saying that excellent operator training is also imperative since solder printing is a very sensitive and delicate process.

![Figure 10. DEK 248 Optical Inspection Station](image)
Squeegees are generally used to physically deposit and distribute the solder paste evenly across the stencil. By properly rolling the squeegee over the stencil, the solder paste passes through the stencil apertures and gets deposited on designated areas on the PCB. The stencil is then lifted, leaving behind the intended solder paste pattern on the PCB.

During solder paste printing, the PCB must be held by its support in a locked position that's perfectly parallel to the stencil. The squeegee angle is usually between 45-60 degrees. A vision system is also necessary to ensure accurate printing of solder paste on the 'solder lands' of the PCB. Modern printing equipment offers many options: computer control, vision or laser print control, environment control, automatic PCB support set-up, and even stencil cleaning.

The BeagleBoard used the following screen printing parameters:

- **Machine**: DEK 248
- **Clamping Method**: Parallel
- **Print Speed**: 40 mm/s / 1.575 in/s
- **Print Pressure**: 5.5 lbs
- **Separation Speed**: 40%
- **PCB Removal Mode**: Auto
- **Print Mode**: Two Pass

The environment in which solder paste printing is done is also important. Defects such as solder bridging and poor wetting can be caused by dust particles or microscopic fibers in the air that end up on the PCB or stencil. Quick drying of the solder paste, on the other hand, can be caused by high ambient temperature or the presence of air draft that accelerates solvent evaporation. The viscosity of the solder paste will also be difficult to keep under control in an environment with fluctuating ambient temperature and humidity.

11 Reflow Atmosphere

Nitrogen gives shorter wetting time, better wetting (appearance) and fewer voids (inclusion of gas) in the solder joint. With SnAgCu paste, the nitrogen atmosphere decreases the wetting to about half the time needed for wetting in air, based on several published application reports. TI has repeated these tests and confirms that a nitrogen atmosphere provides the widest process window.

This means that the time for temperatures over melting point can be shortened by the use of nitrogen. Figure 11 shows the differences between reflow in nitrogen (left image) and air (right image) with SnAgCu solder. The number of voids is much less and the size of the voids is smaller when nitrogen has been used in reflow soldering. For the BeagleBoard, no special atmosphere was used.

![Figure 11. Differences Between Reflow in Nitrogen (left image) and Air (right image) With SnAgCu Solder](image)

www.ti.com

Reflow Atmosphere

SPRAV2—April 2008

Submit Documentation Feedback
12 Reflow

The most popular method of reflowing solder is based on forced convection and/or IR radiation. Some other methods of solder reflow are vapor phase, laser, and hot bar. Mesh belt and edge conveyors are commonly used in reflow ovens. Critical parameters that need to be controlled in the reflow profile are the peak reflow temperature, oxygen level, dwell time above liquidous, soak time, ramp rate, cooling rate, conveyor speed, and the temperature difference across the assembly (ΔT).

The ramp rate in the preheat zone needs to be in a reasonable range. If the rate is too low, the assembly might not be able to reach the required soak temperature fast enough. On the other hand, if the rate is too high, components might be thermally shocked which causes failure.

Proper soak temperature and soak times are required to evaporate solvents and to activate flux in the paste. The soak time has a significant influence on the temperature difference among components. The longer the small components are kept at a fixed temperature level, the better the chance that the large components can reach the same temperature level.

For the BeagleBoard, Figure 12 shows the profile that was developed by CircuitCo in Richardson, Texas who is using the profile for all BeagleBoards.

![Figure 12. CircuitCo Reflow Profile](image)

CircuitCo Reflow Profile:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td># Zones In Oven</td>
<td>18</td>
</tr>
<tr>
<td>Pre-Heat Temp</td>
<td>150°C</td>
</tr>
<tr>
<td>Pre-Heat Dwell</td>
<td>100 sec</td>
</tr>
<tr>
<td>Time Above Liquid</td>
<td>120 sec</td>
</tr>
<tr>
<td>Duration Peak</td>
<td>20 sec</td>
</tr>
<tr>
<td>Peak Reflow Temp</td>
<td>261°C</td>
</tr>
<tr>
<td>Cool Down</td>
<td>8°C/sec</td>
</tr>
<tr>
<td>Speed</td>
<td>50 cm/s</td>
</tr>
</tbody>
</table>
For this assembly, the following paste and fluxes were used.

<table>
<thead>
<tr>
<th>Paste supplier and part number</th>
<th>Amtech LF4300 Lead Free Solder Paste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solder paste chemistry</td>
<td>Sn96.5/Ag3.0/Cu.5</td>
</tr>
<tr>
<td>Tacky paste flux (memory)</td>
<td>Amtech Tacky Solder Flux</td>
</tr>
</tbody>
</table>

With this profile and the listed materials, yields were very good. However, this was a relative small sample so your mileage may vary.

13 Thermal Warpage

A critical aspect of PoP assembly is the type and amount of warpage that can occur during reflow of the processor and the memory. BGA package warpage during reflow soldering can cause open solder joint failure and in the PoP case it's more critical at the top solder joints (memory to processor) than at the solder joints between the processor and the circuit board. As discussed in Part I, proper circuit board design stops almost all of the common problems at that interface since it is more a case of providing sufficient solder paste and properly sized pads between the paste and the BGA. However, in most cases, there is only flux applied to the memory device before it is reflowed. Therefore, there is no additional paste volume to help with filling the void as the two packages move apart during reflow.

Minimizing warpage is a trade off between materials, temperature control and time. Your assembly shop should have recommended profiles for a PoP assembly. Also, memory vendors have done extensive testing and material selection to minimize warpage. However, it is always present and it may not always be repeatable from batch to batch. Be sure and talk to the memory suppliers and obtain their presentations and application reports.

Locate and read the references provided at the end of this application report that specifically discuss thermal warpage issues and test findings. Incorporate these insights into your own assembly process and you will find that your PoP assemblies yield as well as non-PoP fine pitch BGA assemblies.

14 Troubleshooting

This section briefly touches on some of the aspects of troubleshooting assembly issues. There are literally thousands of variables that affect the overall success of fine pitch assembly. This is where close cooperation with your assembly house and a willingness to try different experiments pays off.

The best way to explain many of the variables and interactions that can cause yield issues is through the use of an Ishikawa diagram which is also called a fishbone diagram. It is a cause-and-effect diagram that can reveal key relationships among various variables and possible causes, and perhaps, provide additional insight into a process’s behavior.

Typically, causes in the diagram are often based around a certain category. For most assembly issues, the category is yield and the primary causes are equipment, process, people, materials, environment, and management.

Figure 13 shows a simple diagram that provides an overview of major causes of stress on BGA packages and solder joints.
Figure 13. Fishbone Diagram of Major Causes of Stress on BGA Packages and Solder Joints

Figure 14 shows a typical fishbone diagram that highlights the various causes and effects surrounding assembly yield. Such a diagram, modified to suit your requirements, is invaluable in creating a systematic process for evaluating various problems related to fine pitch assembly.

There is an excellent software package, XMID, that helps build this type of diagram. It also has brain-storming tools suitable for use in both troubleshooting and trouble prevention. See Section 16 for the weblink.

Figure 14. Fishbone Diagram Highlighting Various Causes and Effects Surrounding Assembly Yield

In many cases, the cause of major assembly issues are tracked down to something relatively simple.
15 Acknowledgments

- Jeff De Serrano, Inter-Circuit Solutions, Inc.; 400 Black Castle Drive, Lewisville, Texas 75056, Office: 972.410.0067
- Ron Weindorf, AMS (Austin Division); 9715 A Burnet Road, Suite 500, Austin, Texas 78758, (512) 491-7411
- Clint Cooley and Franklin Troung, CircuitCo, 675 N. Glenville #195, Richardson, TX 75081, 214-466-6690, www.CircuitCo.com
- Ellen Damaso, South Central Region, Micron Technology, Inc. (972) 521-5373

16 References

- PCB Design Guidelines for 0.4mm Package-On-Package (PoP) Packages, Part I (SPRAAV1)
- Influence Of PCB Parameters On Chip Scale Package Assembly And Reliability, Anthony A. Primavera, Surface Mount Technology Laboratory, Universal Instruments Corporation, Binghamton, N.Y.
- ECO Solder Lineup, Senju Metal Industry Co, Ltd. (SMIC), Senju Hashido-cho 23, Adachi-ki, Tokyo 120-8555, Japan.
- Fan-Out Interposers Solve Fine-Pitch Micro BGA Dilemma, Mark Gilliam, Interconnect Systems, Inc. 759 Flynn Road, Camarillo, CA 93012, USA, (805) 482-2870. www.isipkg.com
- DEK48 Screen Printer, DEK USA Inc., 2225 Ringwood Avenue, San Jose, CA. 95131, www.dek.com
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to test the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products
- Amplifiers: amplifier.ti.com
- Data Converters: dataconverter.ti.com
- DSP: dsp.ti.com
- Clocks and Timers: www.ti.com/clocks
- Interface: interface.ti.com
- Logic: logic.ti.com
- Power Mgmt: power.ti.com
- Microcontrollers: microcontroller.ti.com
- RFID: www.ti-rfid.com
- RF/I/F and ZigBee® Solutions: www.ti.com/iris

Applications
- Audio: www.ti.com/audio
- Automotive: www.ti.com/automotive
- Broadband: www.ti.com/broadband
- Digital Control: www.ti.com/digitalcontrol
- Medical: www.ti.com/medical
- Military: www.ti.com/military
- Optical Networking: www.ti.com/interconnect
- Security: www.ti.com/security
- Telephony: www.ti.com/telephony
- Video & Imaging: www.ti.com/video
- Wireless: www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated