Video Scaling Example on the DM642 EVM

ABSTRACT
The video scaling example demonstrates the real time video rescaling on DM642 EVM. The input video frames are scaled in different sizes and displayed on a VGA monitor.

Contents
1 Software Architecture/Data Flow ... 1
2 System Requirements/Configuration .. 2
3 Demonstration Code and Build Procedure .. 3

List of Figures
1 Software Architecture and Data Flow .. 1
2 Example Location and Directory Structure .. 3

1 Software Architecture/Data Flow
DVD/camera -> acquire frame -> scaling -> color space conversion -> display frame.

Figure 1. Software Architecture and Data Flow

1.1 Dataflow diagram for the demonstration
The data flow in the demonstration follows the following sequence:
• Stage 1: A frame is captured from the input source (DVD/camera).
• Stage 2: The acquired frame data which is in YUV4:2:2 is rescaled horizontally/vertically.
• Stage 3: The rescaled data which is in YUV4:2:2 format is converted to RGB565 format.
• Stage 4: The RGB565 data is send to the VGA monitor for display.
1.2 Framework flowchart

The demonstration uses a single unified task to handle video capture, video rescaling, color space conversion, and video display.

Before coming to the BIOS task scheduler, the demonstration code performs initialization of various modules used in the system. These include:

Board and processor initialization:
- The system performs BIOS initialization and CSL initialization.
- The L2 cache mode is set to 128K cache.
- EMIF CE0 and EMIF CE1 space are enabled for caching.
- Sets the DMA priority queue low.
- DMA manager is initialized with allocated internal and external heap.

Creation of capture and display channels:
- An instance of capture channel is created and started.
- An instance of display channel is created and started.

After these initializations, the system enters the processing task.
- "FVID_exchange" provided by the driver acquires a frame from the NTSC input device. The acquired frame is in YUV4:2:2 format.
- Rescaling ratio is updated every four frames.
- Rescale the video frame.
- Convert the rescaled video frame from YUV4:2:2 format to RGB565 format.
- "FVID_exchange" provided by the driver displays a frame on the VGA monitor.

2 System Requirements/Configuration

2.1 Software Requirements
- Microsoft Window XP NT (SP6)/Microsoft Windows 2000 (SP1 and SP2)
- Code Composer Studio™ Integrated Development Environment (IDE) version 2.21 or greater

2.2 Hardware Requirements
- Pentium Machines with 450 MHz, 64 MB RAM (minimum)
- DM642 EVM
- Computer monitor for VGA display
- Camera/DVD for NTSC captures purpose
- XDS 510/560 emulator
3 Demonstration Code and Build Procedure

3.1 Directory Structure

This example is located at:

![Directory Structure Diagram]

Figure 2. Example Location and Directory Structure

3.2 Build Procedure

2. Open the "scaling" project (scaling.prj) in the examples\video\scaling folder.
3. Go to Project -> Build and rebuild the project.
4. Build the project and load the executable from the VGA_LOOPBACK directory "video_vga_loopback.out".
5. Press F5 to run.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Interface</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td></td>
<td>Telephony</td>
</tr>
<tr>
<td></td>
<td>Video & Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated