ABSTRACT

This application report describes ROM bootloader (RBL) differences between silicon revision 2.1 and 2.3 of the TMS320DM644x Digital Media System-on-Chip (DMSoC).

Contents

1 Overview ... 1
2 NAND Boot Changes .. 2
3 SPI-Boot Changes .. 3
4 ROM Version ID ... 4
5 References ... 5

List of Figures

1 NAND-Boot Mode Code Flow .. 2

List of Tables

1 Maximum UBL Size Support .. 3
2 User Bootloader (UBL) Descriptor for SPI Mode 4
3 ROM Version IDs ... 4

1 Overview

1.1 ROM Bootloader (RBL)

The RBL is firmware that is stored in ROM on the DM644x, and responsible for starting the boot process. When the boot process is initiated, it senses the state of the BOOTSEL[0:1] pins and, based on that state, loads a user bootloader (UBL) from external media, which branches to the entry point of the UBL. For details, see the TMS320DM644x Digital Media System-on-Chip (DMSoC) ARM Subsystem Guide (SPRUE14).

1.2 ROM Bootloader (RBL) Change Summary

This section summarizes the changes in the RBL. The RBL used on silicon revision 2.3:

• Makes several changes to its support for NAND boot
• Added SPI-boot mode (as a fall back to NAND-boot mode)

1.2.1 Changes to the NAND Boot Functionality

Silicon revision 2.3 introduces the following changes to NAND boot functionality:

• ONFI support
• 4th byte read support
• 4/8K page support
Figure 1 illustrates the NAND-boot mode code flow in silicon revision 2.3.

1.2.2 SPI-Boot Mode
Silicon revision 2.3 introduces the SPI-boot mode, which is a fallback in case the NAND-boot mode fails.

2 NAND Boot Changes
This section discusses the differences between the ROM bootloader (RBL) support for NAND boot on silicon revision 2.1 and 2.3.

2.1 Support for 4K and 8K NAND Devices Added
The RBL used in silicon revision 2.1 supported NAND page sizes of 256 bytes, 512 bytes and 2048 bytes.
The RBL used in silicon revision 2.3 supports page sizes of 256 bytes, 512 bytes, 2048 bytes, 4096 bytes, and 8192 bytes.

No 8K devices were available for testing when this document was prepared, so 8K has not been tested. However, the RBL contains support for these devices.

2.2 4th Bytes ID Support

If the NAND device is not found in the look-up table, the RBL reads the fourth byte of the NAND ID table and attempts to decode it to obtain the necessary parameters.

For the purpose of determining the NAND block and page size, the information from the fourth byte is considered as follows:

- Bits 5 and 4 determine the block size
 - Bits 5, 4 = 00: 64KB
 - Bits 5, 4 = 01: 128KB
 - Bits 5, 4 = 10: 256KB
 - Bits 5, 4 = 11: 512 KB

- Bits 1 and 0 determine the page size
 - Bits 1, 0 = 00: 1KB
 - Bits 1, 0 = 01: 2KB
 - Bits 1, 0 = 10: 4KB
 - Bits 1, 0 = 11: 8KB

In silicon revision 1.4, the latest Samsung (manufacturer ID: 0xEC) 4th ID definition has been added as follows:

- Bits 5 and 4 determine the block size
 - Bits 5, 4 = 00: 128KB
 - Bits 5, 4 = 01: 256KB
 - Bits 5, 4 = 10: 512KB
 - Bits 5, 4 = 11: 1024 KB

- Bits 1 and 0 determine the page size
 - Bits 1, 0 = 00: 2KB
 - Bits 1, 0 = 01: 3KB
 - Bits 1, 0 = 10: 4KB
 - Bits 1, 0 = 11: reserved

2.3 UBL Size Support for the NAND-Boot mode

The size of NAND UBL supported by RBL depends on the page size of the NAND used. Table 1 details the maximum UBL size support.

<table>
<thead>
<tr>
<th>NAND Page Size</th>
<th>Maximum UBL Size Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 KB</td>
<td>13.5 KB</td>
</tr>
<tr>
<td>2, 4 KB</td>
<td>12 KB</td>
</tr>
<tr>
<td>8 KB</td>
<td>8 KB</td>
</tr>
</tbody>
</table>

3 SPI-Boot Changes

This section discusses the SPI-boot mode, which has been introduced in silicon revision 2.3.

In SPI-boot mode, DM644x loads the UBL data in the following locations, ARM TCM RAM received via SPI0. The UBL data is received from a serial device like serial EEPROM.
3.1 **SPI Key Features**

The key features for SPI are as follows:
- Master interface to a serial EEPROM/Flash for initial code load
- Support for fast-boot mode through UBL descriptor (see Table 2)
- Support for prescaler through UBL descriptor
- Support for 16-bit and 24-bit addressable EEPROMs through the UBL descriptor

3.2 **SPI Boot - Detailed Flow**

The following list describes the flow of the SPI boot:
- RBL configures the pinmultiplexing settings to bring out the SPI0 signals.
- RBL configures the EEPROM initially in 24-bit addressable mode and reads the first byte. Based on the first byte, it configures the EEPROM to 16-bit or 24-bit addressable modes.
- Bootloader reads the entire UBL descriptor and finds out the properties of slave EEPROM. The UBL descriptor contains the prescaler value, which is the divider used to generate the SPI clock. The FAST_READ flag is used to indicate fast/normal mode. RBL uses FAST_READ command if the flag is set; otherwise, it uses standard READ command.
- RBL validates the other UBL header parameters.
- Downloads the UBL to ARM internal memory
- RBL passes control to the entry point given in the UBL descriptor.

<table>
<thead>
<tr>
<th>Byte Range</th>
<th>32 Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>0xA1ACED0X</td>
<td>Magic Number</td>
</tr>
<tr>
<td></td>
<td>0xA1ACED00 – 24 bit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0xA1ACED01 – 16 bit</td>
<td></td>
</tr>
<tr>
<td>4-7</td>
<td>Entry Point</td>
<td>Entry point address for the UBL (absolute address) in ARM internal memory</td>
</tr>
<tr>
<td>8-11</td>
<td>UBL size</td>
<td>Size of UBL in bytes</td>
</tr>
<tr>
<td>12</td>
<td>Prescaler</td>
<td>Prescaler value to be used for dividing the clock for SPI</td>
</tr>
<tr>
<td>13</td>
<td>FASTREAD</td>
<td>Flag for enabling fast read</td>
</tr>
<tr>
<td></td>
<td>0 - Fast read disabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 - Fast read enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note: FAST READ option may not be valid for a specific EEPROM. Please note the EEPROM specifications before settings this parameter.</td>
<td></td>
</tr>
<tr>
<td>14-15</td>
<td>0x0000</td>
<td>Dummy bytes</td>
</tr>
<tr>
<td>16-19</td>
<td>Start address of UBL</td>
<td>Start address of UBL in EEPROM</td>
</tr>
<tr>
<td>20-23</td>
<td>Load address</td>
<td>Load address of UBL in ARM internal memory</td>
</tr>
</tbody>
</table>

4 **ROM Version ID**

The ROM ID is stored at address 0x00005FFC and is four bytes long. To identify which revision of the silicon you are running, examine the values at this address and compare with those in Table 3.

<table>
<thead>
<tr>
<th>ROM Version</th>
<th>ID Stored at 0x00005FFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon Revision 2.1 (and earlier)</td>
<td>0x00000000</td>
</tr>
<tr>
<td>Silicon Revision 2.3</td>
<td>0x00010001</td>
</tr>
</tbody>
</table>
5 References

- TMS320DM644x Digital Media System-on-Chip (DMSoC) ARM Subsystem Guide (SPRUE14)
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are neither designed nor intended for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>DSP</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>Interface</td>
<td>Energy</td>
</tr>
<tr>
<td>Logic</td>
<td>Industrial</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Medical</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>RFID</td>
<td>Space, Avionics & Defense</td>
</tr>
<tr>
<td>RF/IF and ZigBee® Solutions</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated