TMSx70 Configuration of the SCI/LIN Module for UART Communication

Prathap Srinivasan

ABSTRACT

The purpose of this document is to provide help for configuring the SCI/LIN module of TMSx70 microcontrollers for universal asynchronous receiver-transmitter (UART) communication. The application note explains the SCI/LIN module configuration done in the UART driver that is used by Texas Instruments ™ (TI) in a safety demo of the TMSx70 product family. The TMSx70 family of microcontrollers from TI is a family of low-power, 32-bit RISC microcontrollers with an advanced architecture and a rich peripheral set.

Project collateral and source code can be downloaded from the following URL: http://www-s.ti.com/sc/techlit/spna124.zip.

Contents

1 TMSx70 SCI/LIN Module ... 1
2 Configuration of SCI/LIN Module for UART Communication ... 3

List of Figures

1 SCI Block Diagram.. 3
2 SCI/LIN to PC UART Communication.. 4
3 Transmission of Valid User Command *DO0100! and Reception of Corresponding Response... 7
4 Transmission of Valid User Command *DO0200! and Reception of Corresponding Response ... 8
5 Transmission of Invalid User Command and Reception of Error Message. 8
6 Flow Diagram of SCI/LIN for UART Communication .. 9

List of Tables

1 Safety Demo Software User Commands .. 4

1 TMSx70 SCI/LIN Module

1.1 Introduction

The TMSx70 LIN module can be configured as full LIN Mode or SCI (UART) Mode. The SCI/LIN module is a universal asynchronous receiver-transmitter (UART) that implements the standard non-return-to-zero (NRZ) format. The SCI can be used to communicate, for example, through an RS-232 port or over a K-line.

1.2 Main Features of SCI/LIN module in SCI Mode

The TMSx70 SCI/LIN module offers the following functions in SCI mode:

- Standard UART communication
- Multi-buffered receive and transmit units
- DMA capability for minimal CPU intervention

All trademarks are the property of their respective owners.
• Supports full- or half-duplex operation
• Standard NRZ format
• Double-buffered receive and transmit functions
• Configurable frame format of 3 to 13 bits per character based on the following:
 – Data word length programmable from one to eight bits
 – Additional address bit in address-bit mode
 – Parity programmable for zero or one parity bit, odd or even parity
 – Stop programmable for one or two stop bits
• Asynchronous or isosynchronous communication modes
• Two multiprocessor communication formats allow communication between more than two devices.
• Sleep mode is available to free CPU resources during multiprocessor communication.
• The 24-bit programmable baud rate supports 224 different baud rates selection.
• Four error flags and five status flags provide detailed information regarding SCI events.

1.3 Block Diagram

The TMSx70 SCI/LIN module has three main blocks.
• Transmitter
• Receiver
• Baud Clock Generator

For more information about the blocks, see the device-specific technical reference manual.

A general block diagram of the SCI is shown in Figure 1.
2 Configuration of SCI/LIN Module for UART Communication

This section of application note explains the configuration of the SCI/LIN module for UART Communication between the TMSx70 controller and the PC COM port using UART Software.

SCI/LIN module is configured to function in SCI (UART) Mode, which facilitates asynchronous communication between the microcontroller and PC.

The UART communication in the safety demo software is used as an example in this application note. The PC communicates to the safety demo software through the RS232 COM port. The safety demo software execution in the TMSx70 microcontroller is controlled from the PC through user-defined key words transmitted through RS232. Table 1 lists some of the user-defined commands used in the safety demo software.
2.2 Initialization and Configuration of SCI/LIN Module

This section explains the different SCI/LIN module registers that have to be configured for UART communication.

NOTE: The safety demo software is developed using HALCoGen Code generation tool. The symbols used in code snippets are the actual symbols generated by the HALCoGen tool.

sciREG1 – Pointer to the SCI/LIN module base address. It is a structure pointer for bitwise access to the register.

To initialize the SCI/LIN module for UART communication, configure the following registers. For more information on the registers and their default state after reset, see the device-specific technical reference manual.

2.2.1 Disabling SCI/LIN Module (SCIGCR0) Reset

The reset bit disables the SCI/LIN module and ensures the SCI/LIN registers are initialized to their reset values. The SCI/LIN module must be brought out of reset before any UART operation including receive or transmit. The following code snippet enables the SCI/LIN module.
2.2.2 **Configuration of SCI/LIN Global Control Register 1 (SCIGCR1)**

The SCIGCR1 is a 32-bit register which specifies the basic functionality and configuration for the UART communication. The following attributes are defined by the SCIGCR1 register:

- Enable transmit
- Enable receive
- Internal clock (device has no clock pin)
- Number of stop bits
- Even parity or odd parity
- Asynchronous timing mode
- Enable or disable multi-buffer mode

The following code snippet shows initializes the SCIGCR1 register (Transmit and Receive with odd parity are enabled and multi-buffered mode is disabled):

```c
sciREG1->GCR1 = 0x0300002A; // Enable Transmit and Receive functionality
```

2.2.3 **Configuring SCI/LIN Baud Rate Register (BRSR)**

The BRSR is a 32-bit register which is used to select a baud rate for the SCI/LIN module. The below code snippet shows UART configuration for 19200 baud rate from 80MHz VCLK.

```c
sciREG1->BAUD = 260; // baud rate --- 19200 from 80MHz VCLK
```

2.2.4 **Configuring SCI/LIN Data Length**

The SCI Format Control Register (SCIFORMAT) is a 32-bit register which indicates the transmitter/receiver frame length and message data length. The below code snippet configures the data length as 8 bits and frame length as 0. Standard setup for UART is a non-buffered mode so no frame length necessary. Frame length is used either in LIN Mode or buffered SCI Mode only.

```c
sciREG1->LENGTH = 7; // 8 bit Data length
```

2.2.5 **Configuring SCI/LIN Pins in Functional Mode**

The SCI Pin I/O Control Register 0 (SCIPIO0) defines whether the SCI/LIN pins are configured in functional mode or in GIO mode. The following code snippet shows configuration of SCI/LIN in functional mode.

```c
sciReg1->FUNC = 0x00000006; // Enabling Tx and Rx pins
```

2.2.6 **Configuring PULL UP Functionality of SCI/LIN Module**

The SCI Pin I/O Control Register 8 (SCIPIO8) is a 32-bit register which enables the PULL UP or PULL DOWN functionality of SCI/LIN pins. The below code snippet enables PULL UP functionality for SCI/LIN Pins.

```c
sciREG1->PSL = 0x00000006; //Enable PULL Up functionality for RX and TX Pins
```
2.2.7 Initialization and Configuration of SCI/LIN Interrupts

The SCI Set Interrupt Level Register (SCISETINTLVL) is a 32-bit register which maps all the SCI/LIN Interrupts to either level 0 or level 1 of the vectored interrupt manager (VIM) according to their respective priority encoders.

NOTE: Level 1 interrupt has higher priority compared to Level 0.

The SCISETINT and SCICLEARINT registers are used to enable or disable the SCI/LIN interrupts by setting or clearing the respective interrupt bit. The following code snippet shows enabling of the Receive Interrupt and mapping it to Level 0 Interrupt. By default or at reset these registers are 0.

```c
sciReg1->SETINTLVL = 0x00000000;  // All Interrupts are configured as Level 0
sciReg1->SETINT = 0x00000020;      // Enabling Rx Interrupt
```

2.2.8 Enabling SCI/LIN for UART Communication

The SWnRST in the SCIGCR1 initializes or enables the SCI/LIN module for UART communication. While this bit is 0, the state machine is held in reset and the module will neither transmit nor receive data. Writing a 1 releases the state machine and the UART can transmit or receive data. The following code snippet shows enabling of SCI/LIN for UART communication.

```c
sciReg1->GCR1 |= 0x00000080;  // End of Module Configuration
```

NOTE: After SWnRST is set to 1, the configuration of the module should not change.

2.3 Receive Routine of UART Communication in Safety Demo Software

After SCI/LIN module initialization, the demo software waits for the user command from the PC. Each user command is defined as eight data of 8 bit. The software configures the Rx Interrupt to indicate the receipt of data. This signals the software to retrieve the data from the Rx buffer. SCI/LIN uses its state machine to receive the data and triggers the interrupt.

The Receive routine of UART driver performs the following operations:

1. Checks whether a valid user command is received or not. A valid user command starts with ‘*’ and ends with ‘!’ along with the task number and Sub Task Number. Example: - *DO0200!. Here 02 is task number and 00 is sub-task number.
2. Passes the task number and sub-task Number to main software.

2.4 Transmit Routine of UART Communication in Safety Demo Software

The Transmit routine of the UART driver software follows polling method to transmit data. The software polls for the transmitter buffer register ready flag (TXRDY) to be set before writing data to the transmit data buffer register. This ensures that the previous message has been sent before writing new data in the transmit data buffer.

Once the command is verified and task numbers are identified, the following information is transmitted back by the UART driver to the PC based on the received command.

1. For a valid user command received:
 a. First an acknowledgment is transmitted (i.e., “VALID!”).
 b. Based on the task number and sub-task number received, the safety demo software executes a particular task or test.
 c. The test results are transmitted back to the PC. Example: For *DO0100! (valid user command) the Firmware Version number “Ver 1.0” is transmitted.
2. For an invalid user command received:
 (a) An error message is transmitted. Example: For !watisth (Invalid command) the error message
 “WHO R U?” is transmitted back to PC.

 NOTE:
 - The Transmit and Receive routine of UART communication described above has nothing to do with
 the UART protocol. It is just the way the UART driver was written in the safety demo software.
 - The safety demo software has enough bandwidth to take care of interrupt latency causing missed data
 because of other interrupts preventing the SCI Rx interrupt from firing. In order to use this UART
 driver function in their application software, the user has to take care of the interrupt latency that could
 cause data miss.

2.5 **PC-UART Software Configuration**

Any UART communication program can be used to send and receive characters over the serial port. The
following UART configurations have to be made to communicate with the safety demo software.
- Baud Rate : 19200
- No Parity : None
- Stop bits : 0
- Flow Control : None
- Port : Select the connected COM port.
- Transmit Data : *DO0100!, *DO0200!

After configuring, keep the UART software active to receive and transmit messages. The following
snapshots have been taken while using Hyperterminal UART software for transmitting user commands
and receiving responses from the microcontroller in a Windows PC.

Figure 3 and Figure 4 show the snapshot of the valid user command (*DO0100! and *DO0200!)
transmission and the response it received.

Figure 5 shows the snapshot of the invalid user command (!watishd) transmission and the response it
received.

![Figure 3. Transmission of Valid User Command *DO0100! and Reception of Corresponding Response.](image-url)
2.6 SCI/LIN Module Configuration Steps for UART Communication

The following steps describe the SCI/LIN module configuration flow for UART communication.

1. Disable SCICR0 Reset.
2. Configure SCICR1.
 (a) Enable Transmit
 (b) Enable Receive
 (c) Configure number of stop bits (i.e., '1')
 (d) Enable asynchronous timing mode
 (e) Disable multi-buffer mode
3. Configure SCI/LIN baud rate to 19200 bits per second
4. Configure SCI/LIN data length to '7' (i.e., 8 bits per character)
5. Configure SCI/LIN Pins in Functional Mode
6. Enable PULL UP functionality of SCI/LIN Module
7. Initialize and configure SCI/LIN interrupts
8. Enable SCI/LIN Module for UART communication: - Set SWnRST bit.
2.7 Software Flow Diagram

Figure 6. Flow Diagram of SCI/LIN for UART Communication
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are neither designed nor intended for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products, and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products, and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Communications and</td>
</tr>
<tr>
<td></td>
<td>Telecom</td>
</tr>
<tr>
<td>DSP</td>
<td>Computers and</td>
</tr>
<tr>
<td></td>
<td>Peripherals</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>Interface</td>
<td>Energy</td>
</tr>
<tr>
<td>Logic</td>
<td>Industrial</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Medical</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>RFID</td>
<td>Space, Avionics &</td>
</tr>
<tr>
<td></td>
<td>Defense</td>
</tr>
<tr>
<td>RF/IF and ZigBee® Solutions</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated