Introduction

In today’s increasingly complex and interconnected world, system-on-a-chip (SoC) performance requirements are influenced by existing as well as evolving and emerging applications. Continued consolidation of the functionality required to meet performance and cost targets has led Texas Instruments (TI) to re-examine many of the basic building blocks of existing SoC solutions.

TI’s new multicore, multilayer SoC architecture will power a family of devices targeted at advanced communications infrastructure applications, such as those found in carrier networks and wireless base stations. These devices are based on a flexible and comprehensive multicore architecture and incorporate a software ecosystem that eases programming burdens while providing industry-leading performance and shortened development time.

Multicore, multilayer SoC architecture

SoC is a concept that has been around for a long time; the basic approach is to integrate more and more functionality into a given device. This integration can take the form of either hardware or solution software. Performance gains are traditionally achieved by increased clock rates and more advanced process nodes. Many SoC designs pair a DSP with a RISC processor to target specific applications.

A more recent approach to increasing performance has been to create multicore devices. In this scenario, it’s important to manage the competition for processing resources so that the full entitlement of the device can be realized. TI’s new multicore, multilayer SoC architecture addresses these challenges and creates the first true network-on-chip infrastructure to unleash full multicore entitlement.

Advancing Moore’s Law

The move to more advanced process nodes has been a key driver in keeping up with Moore’s Law. In the case of TI’s new family of devices, a move to 40 nanometers provides an impressive performance boost – but today’s applications require more.

TI’s new SoC architecture provides the flexibility to include targeted coprocessing, fixed- and floating-point operation, optimized inter-element communication, and a variety of processor types (DSP, VSP, ARM®, etc.). TI’s architecture incorporates DSP cores capable of both 32 GMACs per core for fixed-point operations and 16 GFLOPS for floating-point operations. This represents a performance boost that far exceeds the expectation of Moore’s Law in a single generation and also brings to market the first floating-point processor capable of operating at the highest DSP performance levels. Figure 1 on the following page illustrates the new architecture.
TI has designed comprehensive connectivity planes — TeraNet 2 which provides throughput of 2 terabits per second — to address the need to seamlessly interconnect various processing elements. TI’s Multicore Shared Memory Controller provides direct access to the on-chip shared memory system and external DDR3 memory without robbing internal switch-fabric bandwidth, while TI’s Multicore Navigator facilitates and manages communications across the SoC architecture through more than eight-thousand elements. HyperLink 50 allows the interconnection of companion devices such as additional coprocessors or companion TI SoCs.

Simplifying the software ecosystem

With all of the advances made in multicore, multilayer SoC architectures, TI has taken bold steps to enable an efficient, simplified software development ecosystem to provide full silicon entitlement to application developers. The resulting ecosystem targets all SoC components shown in Figure 2 and is summarized as:

- Support for various peripherals (PCIe, SRIO, Ethernet)
- Management of coprocessors
- Enabled connectivity within each device
- Multiple operating systems preintegrated with drivers, coprocessors and connectivity software (Linux, DSP/BIOS™ real-time kernel)
- The industry’s most efficient toolkit
Texas Instruments

Realizing full multicore entitlement

February 2010

TI recognizes that existing and emerging applications will demand different uses for the multiple layers and processing elements/cores. Some applications may use each core independently; others may want to use one processing element as master while other processing elements are designated slaves. In a third variant, all processing elements could be peers, and tasks are dynamically allocated. Some applications might want to use the device as a high-performance compute (HPC) engine enabled through such standards as OpenCL and OpenMP.

To provide such diverse application development, TI will offer a basic enabler software development toolkit that encompasses the enabler software, tools and operating system for application developers. This toolkit has been developed in lockstep with the silicon advances to ensure optimized access to various accelerators and multilayer connectivity planes for application developers.

TI has worked very closely with its software development partners to ensure that the tools, software and operating systems will use the architecture features seamlessly.

A strong software ecosystem is the basis in the development of successful multicore solutions. With TI’s enabler software and tools, along with a rich offering from TI’s software partners, the power of TI’s multicore, multilayer silicon architecture is now open to

Flexible and broad approach to software

Achieving network-on-chip capabilities

Figure 2. Multicore, multilayer software ecosystem
customers, enabling them to develop exciting new applications for today’s and tomorrow’s connected world.

Based on the new SoC architecture, TI’s new family of devices is a large step forward in enabling more comprehensive network-on-chip capability. As TI continues to invest in multicore technologies, the new SoC architecture will provide a basis for roadmap development and a solid foundation for future customer development.

Authors

John Warner is the director for the Multicore and Media Infrastructure business unit at Texas Instruments, where he manages the associated product management, marketing and business development efforts. John has more than 20 years of experience in the telecommunications industry and helps set the strategic direction of the networking infrastructure group.

Sanjay Bhal is a strategic marketing manager for the Multicore and Media Infrastructure business unit at Texas Instruments, where he works on multicore software product management and marketing efforts. Sanjay has more than 11 years of experience in the embedded processing industry.

Tom Flanagan is the director of technical strategy for the Multicore and Media Infrastructure business unit at Texas Instruments, where his 28 years of industry experience helps TI determine how it can continue innovating and delivering new voice and DSP-based products and technologies to the market. Prior to his current role, Tom served as the director of broadband strategy for TI’s Broadband Communications group, where he identified market trends and provided the vision and strategic direction for TI’s broadband portfolio, including cable, DSL and WLAN products.

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

DSP/BIOS is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are neither designed nor intended for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>DSP</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>Interface</td>
<td>Energy</td>
</tr>
<tr>
<td>Logic</td>
<td>Industrial</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Medical</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>RFID</td>
<td>Space, Avionics & Defense</td>
</tr>
<tr>
<td>RF/IF and ZigBee® Solutions</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated